Hive常用DDL操作
319
notes/Hive常用DML操作.md
Normal file
@ -0,0 +1,319 @@
|
||||
# Hive 常用DML操作
|
||||
|
||||
<nav>
|
||||
<a href="#一加载文件数据到表">一、加载文件数据到表</a><br/>
|
||||
<a href="#二查询结果插入到表">二、查询结果插入到表</a><br/>
|
||||
<a href="#三使用SQL语句插入值">三、使用SQL语句插入值</a><br/>
|
||||
<a href="#四更新和删除数据">四、更新和删除数据</a><br/>
|
||||
<a href="#五查询结果写出到文件系统">五、查询结果写出到文件系统</a><br/>
|
||||
</nav>
|
||||
|
||||
|
||||
## 一、加载文件数据到表
|
||||
|
||||
### 1.1 语法
|
||||
|
||||
将文件数据加载到表时,Hive不会进行任何转换,加载操作是纯复制/移动操作,它将数据文件移动到Hive表定义的存储位置。
|
||||
|
||||
```shell
|
||||
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
|
||||
```
|
||||
|
||||
- Load 关键字代表从本地文件系统加载文件,省略则代表从HDFS上加载文件:
|
||||
|
||||
+ 从本地文件系统加载文件时, `filepath`可以是绝对路径也可以是相对路径(建议使用绝对路径);
|
||||
|
||||
+ 从HDFS加载文件时候,`filepath`为文件完整的URL地址:如`hdfs://namenode:port/user/hive/project/ data1`
|
||||
|
||||
- `filepath`可以是文件路径(在这种情况下Hive会将文件移动到表中),也可以目录路径(在这种情况下,Hive会将该目录中的所有文件移动到表中);
|
||||
|
||||
- 如果使用OVERWRITE关键字,则将删除目标表(或分区)的内容,使用新的数据填充;不使用此关键字,则数据以追加的方式加入;
|
||||
|
||||
- 加载的目标可以是表或分区。如果是分区表,则必须指定加载数据的分区;
|
||||
|
||||
- 加载文件的格式必须与建表时使用` STORED AS`指定的存储格式相同。
|
||||
|
||||
> 使用建议:
|
||||
>
|
||||
> **不论是本地路径还是URL都建议使用完整的**。虽然可以使用不完整的URL地址,此时Hive将使用hadoop中fs.default.name配置来推断地址,但是为避免不必要的错误,建议使用完整的本地路径或URL地址;
|
||||
>
|
||||
> **加载对象是分区表时建议显示指定分区**。在Hive 3.0之后,内部将加载(LOAD)重写为INSERT AS SELECT,此时如果不指定分区,INSERT AS SELECT将假设最后一组列是分区列,如果该列不是表定义的分区,它将抛出错误。为避免错误,还是建议显示指定分区。
|
||||
|
||||
### 1.2 示例
|
||||
|
||||
新建分区表:
|
||||
|
||||
```sql
|
||||
CREATE TABLE emp_ptn(
|
||||
empno INT,
|
||||
ename STRING,
|
||||
job STRING,
|
||||
mgr INT,
|
||||
hiredate TIMESTAMP,
|
||||
sal DECIMAL(7,2),
|
||||
comm DECIMAL(7,2)
|
||||
)
|
||||
PARTITIONED BY (deptno INT) -- 按照部门编号进行分区
|
||||
ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t";
|
||||
```
|
||||
|
||||
从HDFS上加载数据到分区表:
|
||||
|
||||
```sql
|
||||
LOAD DATA INPATH "hdfs://hadoop001:8020/mydir/emp.txt" OVERWRITE INTO TABLE emp_ptn PARTITION (deptno=20);
|
||||
```
|
||||
|
||||
> emp.txt文件可在本仓库的resources目录中下载
|
||||
|
||||
加载后表中数据如下,分区列deptno全部赋值成20:
|
||||
|
||||
<div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hive-emp-ptn.png"/> </div>
|
||||
|
||||
## 二、查询结果插入到表
|
||||
|
||||
### 2.1 语法
|
||||
|
||||
```sql
|
||||
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1 FROM from_statement;
|
||||
INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM from_statement;
|
||||
```
|
||||
|
||||
+ Hive 0.13.0开始,建表时可以通过使用TBLPROPERTIES(“immutable”=“true”)来创建不可变表(immutable table) ,如果不可以变表中存在数据,则INSERT INTO失败。(注:INSERT OVERWRITE的语句不受`immutable`属性的影响);
|
||||
|
||||
+ 可以对表或分区执行插入操作。如果表已分区,则必须通过指定所有分区列的值来指定表的特定分区;
|
||||
|
||||
+ 从Hive 1.1.0开始,TABLE关键字是可选的;
|
||||
|
||||
+ 从Hive 1.2.0开始 ,可以采用INSERT INTO tablename(z,x,c1)指明插入列;
|
||||
|
||||
+ 可以将SELECT语句的查询结果插入多个表(或分区),称为多表插入。语法如下:
|
||||
|
||||
```sql
|
||||
FROM from_statement
|
||||
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1
|
||||
[INSERT OVERWRITE TABLE tablename2 [PARTITION ... [IF NOT EXISTS]] select_statement2]
|
||||
[INSERT INTO TABLE tablename2 [PARTITION ...] select_statement2] ...;
|
||||
```
|
||||
|
||||
### 2.2 动态插入分区
|
||||
|
||||
```sql
|
||||
INSERT OVERWRITE TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM from_statement;
|
||||
INSERT INTO TABLE tablename PARTITION (partcol1[=val1], partcol2[=val2] ...) select_statement FROM from_statement;
|
||||
```
|
||||
|
||||
在向分区表插入数据时候,分区列名是必须的,但是列值是可选的。如果给出了分区列值,我们将其称为静态分区,否则它是动态分区。动态分区列必须在SELECT语句的列中最后指定,并且与它们在PARTITION()子句中出现的顺序相同。
|
||||
|
||||
注意:Hive 0.9.0之前的版本动态分区插入是默认禁用的,而0.9.0之后的版本则默认启用。以下是动态分区的相关配置:
|
||||
|
||||
| 配置 | 默认值 | 说明 |
|
||||
| ------------------------------------------ | -------- | ------------------------------------------------------------ |
|
||||
| `hive.exec.dynamic.partition` | `true` | 需要设置为true才能启用动态分区插入 |
|
||||
| `hive.exec.dynamic.partition.mode` | `strict` | 在严格模式(strict)下,用户必须至少指定一个静态分区,以防用户意外覆盖所有分区,在非严格模式下,允许所有分区都是动态的 |
|
||||
| `hive.exec.max.dynamic.partitions.pernode` | 100 | 允许在每个mapper/reducer节点中创建的最大动态分区数 |
|
||||
| `hive.exec.max.dynamic.partitions` | 1000 | 允许总共创建的最大动态分区数 |
|
||||
| `hive.exec.max.created.files` | 100000 | 作业中所有mapper/reducer创建的HDFS文件的最大数量 |
|
||||
| `hive.error.on.empty.partition` | `false` | 如果动态分区插入生成空结果,是否抛出异常 |
|
||||
|
||||
### 2.3 示例
|
||||
|
||||
1. 新建emp表,作为查询对象表
|
||||
|
||||
```sql
|
||||
CREATE TABLE emp(
|
||||
empno INT,
|
||||
ename STRING,
|
||||
job STRING,
|
||||
mgr INT,
|
||||
hiredate TIMESTAMP,
|
||||
sal DECIMAL(7,2),
|
||||
comm DECIMAL(7,2),
|
||||
deptno INT)
|
||||
ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t";
|
||||
|
||||
-- 加载数据到emp表中 这里直接从本地加载
|
||||
load data local inpath "/usr/file/emp.txt" into table emp;
|
||||
```
|
||||
完成后`emp`表中数据如下:
|
||||
<div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hive-emp.png"/> </div>
|
||||
|
||||
2. 为清晰演示,先清空`emp_ptn`表中加载的数据:
|
||||
|
||||
```sql
|
||||
TRUNCATE TABLE emp_ptn;
|
||||
```
|
||||
|
||||
3. 静态分区演示:从`emp`表中查询部门编号为20的员工数据,并插入`emp_ptn`表中,语句如下:
|
||||
|
||||
```sql
|
||||
INSERT OVERWRITE TABLE emp_ptn PARTITION (deptno=20) SELECT empno,ename,job,mgr,hiredate,sal,comm FROM emp WHERE deptno=20;
|
||||
```
|
||||
|
||||
完成后`emp_ptn`表中数据如下:
|
||||
|
||||
<div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hive-emp-deptno-20.png"/> </div>
|
||||
|
||||
4. 接着演示动态分区:
|
||||
|
||||
```sql
|
||||
-- 由于我们只有一个分区,且还是动态分区,所以需要关闭严格默认。因为在严格模式下,用户必须至少指定一个静态分区
|
||||
set hive.exec.dynamic.partition.mode=nonstrict;
|
||||
|
||||
-- 动态分区 此时查询语句的最后一列为动态分区列,即deptno
|
||||
INSERT OVERWRITE TABLE emp_ptn PARTITION (deptno) SELECT empno,ename,job,mgr,hiredate,sal,comm,deptno FROM emp WHERE deptno=30;
|
||||
```
|
||||
|
||||
完成后`emp_ptn`表中数据如下:
|
||||
|
||||
<div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hive-emp-deptno-20-30.png"/> </div>
|
||||
|
||||
|
||||
|
||||
## 三、使用SQL语句插入值
|
||||
|
||||
```sql
|
||||
INSERT INTO TABLE tablename [PARTITION (partcol1[=val1], partcol2[=val2] ...)] VALUES ( value [, value ...] )
|
||||
```
|
||||
|
||||
+ 使用时必须为表中的每个列都提供值。不支持只向部分列插入值(可以为缺省值的列提供空值来消除这个弊端);
|
||||
+ 如果目标表表支持ACID及其事务管理器,则插入后自动提交;
|
||||
+ 不支持支持复杂类型(array, map, struct, union)的插入。
|
||||
|
||||
|
||||
|
||||
## 四、更新和删除数据
|
||||
|
||||
### 4.1 语法
|
||||
|
||||
更新和删除的语法比较简单,和关系型数据库一致。需要注意的是这两个操作都只能在支持ACID的表,也就是事务表上才能执行。
|
||||
|
||||
```sql
|
||||
-- 更新
|
||||
UPDATE tablename SET column = value [, column = value ...] [WHERE expression]
|
||||
|
||||
--删除
|
||||
DELETE FROM tablename [WHERE expression]
|
||||
```
|
||||
|
||||
### 4.2 示例
|
||||
|
||||
1. 首先需要更改`hive-site.xml`,添加如下配置,开启事务支持,配置完成后需要重启Hive服务。
|
||||
|
||||
```xml
|
||||
<property>
|
||||
<name>hive.support.concurrency</name>
|
||||
<value>true</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>hive.enforce.bucketing</name>
|
||||
<value>true</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>hive.exec.dynamic.partition.mode</name>
|
||||
<value>nonstrict</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>hive.txn.manager</name>
|
||||
<value>org.apache.hadoop.hive.ql.lockmgr.DbTxnManager</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>hive.compactor.initiator.on</name>
|
||||
<value>true</value>
|
||||
</property>
|
||||
<property>
|
||||
<name>hive.in.test</name>
|
||||
<value>true</value>
|
||||
</property>
|
||||
```
|
||||
|
||||
2. 创建用于测试的事务表,建表时候指定属性`transactional = true`则代表该表是事务表。需要注意的是,按照[官方文档](https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions)的说明,目前Hive中的事务表有以下限制:
|
||||
+ 必须是buckets Table;
|
||||
+ 仅支持ORC文件格式;
|
||||
+ 不支持LOAD DATA ...语句。
|
||||
|
||||
```sql
|
||||
-- 建表语句
|
||||
CREATE TABLE emp_ts(
|
||||
empno int,
|
||||
ename String
|
||||
)
|
||||
CLUSTERED BY (empno) INTO 2 BUCKETS STORED AS ORC
|
||||
TBLPROPERTIES ("transactional"="true");
|
||||
```
|
||||
3. 插入测试数据
|
||||
|
||||
```sql
|
||||
INSERT INTO TABLE emp_ts VALUES (1,"ming"),(2,"hong");
|
||||
```
|
||||
|
||||
插入数据依靠的是MapReduce作业,执行成功后数据如下:
|
||||
|
||||
<div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hive-emp-ts.png"/> </div>
|
||||
|
||||
4. 测试更新和删除
|
||||
|
||||
```sql
|
||||
--更新数据
|
||||
UPDATE emp_ts SET ename = "lan" WHERE empno=1;
|
||||
|
||||
--删除数据
|
||||
DELETE FROM emp_ts WHERE empno=2;
|
||||
```
|
||||
|
||||
更新和删除数据依靠的也是MapReduce作业,执行成功后数据如下:
|
||||
|
||||
<div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hive-emp-ts-2.png"/> </div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## 五、查询结果写出到文件系统
|
||||
|
||||
### 5.1 语法
|
||||
|
||||
```sql
|
||||
INSERT OVERWRITE [LOCAL] DIRECTORY directory1
|
||||
[ROW FORMAT row_format] [STORED AS file_format]
|
||||
SELECT ... FROM ...
|
||||
```
|
||||
|
||||
+ OVERWRITE关键字表示输出文件存在时,先删除后再重新写入;
|
||||
|
||||
+ 和Load语句一样,建议无论是本地路径还是URL地址都使用完整的;
|
||||
|
||||
+ 写入文件系统的数据被序列化为文本,其中列默认由^A分隔,行由换行符分隔。如果列不是基本类型,则将其序列化为JSON格式。其中行分隔符不允许自定义,但列分隔符可以自定义,如下:
|
||||
|
||||
```sql
|
||||
-- 定义列分隔符为'\t'
|
||||
insert overwrite local directory './test-04'
|
||||
row format delimited
|
||||
FIELDS TERMINATED BY '\t'
|
||||
COLLECTION ITEMS TERMINATED BY ','
|
||||
MAP KEYS TERMINATED BY ':'
|
||||
select * from src;
|
||||
```
|
||||
|
||||
### 5.2 示例
|
||||
|
||||
这里我们将上面创建的`emp_ptn`表导出到本地文件系统,语句如下:
|
||||
|
||||
```sql
|
||||
INSERT OVERWRITE LOCAL DIRECTORY '/usr/file/ouput'
|
||||
ROW FORMAT DELIMITED
|
||||
FIELDS TERMINATED BY '\t'
|
||||
SELECT * FROM emp_ptn;
|
||||
```
|
||||
|
||||
导出结果如下:
|
||||
|
||||
<div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hive-ouput.png"/> </div>
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## 参考资料
|
||||
|
||||
1. [Hive Transactions](https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions)
|
||||
2. [Hive Data Manipulation Language](https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML)
|
BIN
pictures/hive-emp-deptno-20-30.png
Normal file
After Width: | Height: | Size: 28 KiB |
BIN
pictures/hive-emp-deptno-20.png
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
pictures/hive-emp-ptn.png
Normal file
After Width: | Height: | Size: 32 KiB |
BIN
pictures/hive-emp-ts-2.png
Normal file
After Width: | Height: | Size: 2.4 KiB |
BIN
pictures/hive-emp-ts.png
Normal file
After Width: | Height: | Size: 2.7 KiB |
BIN
pictures/hive-emp.png
Normal file
After Width: | Height: | Size: 32 KiB |
BIN
pictures/hive-ouput.png
Normal file
After Width: | Height: | Size: 25 KiB |