spark SQL常用聚合函数
This commit is contained in:
		| @@ -1,65 +1,54 @@ | ||||
| package rdd.scala | ||||
|  | ||||
| import org.apache.spark.sql.expressions.Aggregator | ||||
| import org.apache.spark.sql.{Encoder, Encoders, SparkSession, functions} | ||||
| import org.apache.spark.sql.SparkSession | ||||
| import org.apache.spark.sql.functions._ | ||||
|  | ||||
| // 1.定义员工类,对于可能存在null值的字段需要使用Option进行包装 | ||||
| case class Emp(ename: String, comm: scala.Option[Double], deptno: Long, empno: Long, | ||||
|                hiredate: String, job: String, mgr: scala.Option[Long], sal: Double) | ||||
|  | ||||
| // 2.定义聚合操作的中间输出类型 | ||||
| case class SumAndCount(var sum: Double, var count: Long) | ||||
|  | ||||
| /* 3.自定义聚合函数 | ||||
|  * @IN  聚合操作的输入类型 | ||||
|  * @BUF reduction操作输出值的类型 | ||||
|  * @OUT 聚合操作的输出类型 | ||||
|  */ | ||||
| object MyAverage extends Aggregator[Emp, SumAndCount, Double] { | ||||
|  | ||||
|  | ||||
|   // 4.用于聚合操作的的初始零值 | ||||
|   override def zero: SumAndCount = SumAndCount(0, 0) | ||||
|  | ||||
|  | ||||
|   // 5.同一分区中的reduce操作 | ||||
|   override def reduce(avg: SumAndCount, emp: Emp): SumAndCount = { | ||||
|     avg.sum += emp.sal | ||||
|     avg.count += 1 | ||||
|     avg | ||||
|   } | ||||
|  | ||||
|   // 6.不同分区中的merge操作 | ||||
|   override def merge(avg1: SumAndCount, avg2: SumAndCount): SumAndCount = { | ||||
|     avg1.sum += avg2.sum | ||||
|     avg1.count += avg2.count | ||||
|     avg1 | ||||
|   } | ||||
|  | ||||
|   // 7.定义最终的输出类型 | ||||
|   override def finish(reduction: SumAndCount): Double = reduction.sum / reduction.count | ||||
|  | ||||
|   // 8.中间类型的编码转换 | ||||
|   override def bufferEncoder: Encoder[SumAndCount] = Encoders.product | ||||
|  | ||||
|   // 9.输出类型的编码转换 | ||||
|   override def outputEncoder: Encoder[Double] = Encoders.scalaDouble | ||||
| } | ||||
|  | ||||
| object SparkSqlApp { | ||||
|  | ||||
|   // 测试方法 | ||||
|   def main(args: Array[String]): Unit = { | ||||
|  | ||||
|     val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate() | ||||
|     import spark.implicits._ | ||||
|     val ds = spark.read.json("file/emp.json").as[Emp] | ||||
|     val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate() | ||||
|     val empDF = spark.read.json("/usr/file/json/emp.json") | ||||
|     empDF.createOrReplaceTempView("emp") | ||||
|     empDF.show() | ||||
|  | ||||
|     empDF.select(count("ename")).show() | ||||
|     empDF.select(countDistinct("deptno")).show() | ||||
|     empDF.select(approx_count_distinct("ename", 0.1)).show() | ||||
|     empDF.select(first("ename"), last("job")).show() | ||||
|     empDF.select(min("sal"), max("sal")).show() | ||||
|     empDF.select(sum("sal")).show() | ||||
|     empDF.select(sumDistinct("sal")).show() | ||||
|     empDF.select(avg("sal")).show() | ||||
|  | ||||
|  | ||||
|     // 总体方差 均方差 总体标准差 样本标准差 | ||||
|     empDF.select(var_pop("sal"), var_samp("sal"), stddev_pop("sal"), stddev_samp("sal")).show() | ||||
|  | ||||
|  | ||||
|     // 偏度和峰度 | ||||
|     empDF.select(skewness("sal"), kurtosis("sal")).show() | ||||
|  | ||||
|     // 计算两列的 皮尔逊相关系数 样本协方差 总体协方差 | ||||
|     empDF.select(corr("empno", "sal"), covar_samp("empno", "sal"), | ||||
|       covar_pop("empno", "sal")).show() | ||||
|  | ||||
|     empDF.agg(collect_set("job"), collect_list("ename")).show() | ||||
|  | ||||
|  | ||||
|     empDF.groupBy("deptno", "job").count().show() | ||||
|     spark.sql("SELECT deptno, job, count(*) FROM emp GROUP BY deptno, job").show() | ||||
|  | ||||
|     empDF.groupBy("deptno").agg(count("ename").alias("人数"), sum("sal").alias("总工资")).show() | ||||
|     spark.sql("SELECT deptno, count(ename) ,sum(sal) FROM emp GROUP BY deptno").show() | ||||
|  | ||||
|  | ||||
|     empDF.groupBy("deptno").agg("ename"->"count","sal"->"sum").show() | ||||
|  | ||||
|  | ||||
|  | ||||
|     // 10.使用内置avg()函数和自定义函数分别进行计算,验证自定义函数是否正确 | ||||
|     val myAvg = ds.select(MyAverage.toColumn.name("average_sal")).first() | ||||
|     val avg = ds.select(functions.avg(ds.col("sal"))).first().get(0) | ||||
|  | ||||
|     println("自定义average函数 : " + myAvg) | ||||
|     println("内置的average函数 : " + avg) | ||||
|   } | ||||
| } | ||||
|   | ||||
		Reference in New Issue
	
	Block a user