scala映射和元组
This commit is contained in:
parent
6ed20dc54e
commit
27efac62b2
@ -271,4 +271,4 @@ res6: Boolean = true
|
||||
|
||||
## 参考资料
|
||||
|
||||
1. Martin Odersky(著),高宇翔(译) . Scala编程(第3版)[M] . 电子工业出版社 . 2018-1-1
|
||||
1. Martin Odersky . Scala编程(第3版)[M] . 电子工业出版社 . 2018-1-1
|
||||
|
@ -1,4 +1,5 @@
|
||||
# Scala 数组相关操作
|
||||
|
||||
<nav>
|
||||
<a href="#一定长数组">一、定长数组</a><br/>
|
||||
<a href="#二变长数组">二、变长数组</a><br/>
|
||||
@ -192,5 +193,5 @@ object ScalaApp extends App {
|
||||
|
||||
## 参考资料
|
||||
|
||||
1. Martin Odersky(著),高宇翔(译) . Scala编程(第3版)[M] . 电子工业出版社 . 2018-1-1
|
||||
2. 凯.S.霍斯特曼(著),高宇翔(译) . 快学Scala(第2版)[M] . 电子工业出版社 . 2017-7
|
||||
1. Martin Odersky . Scala编程(第3版)[M] . 电子工业出版社 . 2018-1-1
|
||||
2. 凯.S.霍斯特曼 . 快学Scala(第2版)[M] . 电子工业出版社 . 2017-7
|
@ -0,0 +1,272 @@
|
||||
# Scala映射和元组
|
||||
|
||||
## 一、映射(Map)
|
||||
|
||||
### 1.1 构造映射
|
||||
|
||||
```scala
|
||||
scala> import scala.collection.immutable.HashMap
|
||||
import scala.collection.immutable.HashMap
|
||||
|
||||
// 初始化一个空map
|
||||
scala> val scores01 = new HashMap[String, Int]
|
||||
scores01: scala.collection.immutable.HashMap[String,Int] = Map()
|
||||
|
||||
// 从指定的值初始化映射(方式一)
|
||||
scala> val scores02 = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||||
scores02: scala.collection.immutable.Map[String,Int] = Map(hadoop -> 10, spark -> 20, storm -> 30)
|
||||
|
||||
// 从指定的值初始化映射(方式二)
|
||||
scala> val scores03 = Map(("hadoop", 10), ("spark", 20), ("storm", 30))
|
||||
scores03: scala.collection.immutable.Map[String,Int] = Map(hadoop -> 10, spark -> 20, storm -> 30)
|
||||
```
|
||||
|
||||
采用上面方式得到的都是不可变(immutable)映射,想要得到可变映射,则用:
|
||||
|
||||
```scala
|
||||
scala> val scores04 = scala.collection.mutable.Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||||
scores04: scala.collection.mutable.Map[String,Int] = Map(spark -> 20, hadoop -> 10, storm -> 30)
|
||||
```
|
||||
|
||||
### 1.2 获取值
|
||||
|
||||
```scala
|
||||
object ScalaApp extends App {
|
||||
|
||||
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||||
|
||||
// 1.获取指定key对应的值
|
||||
println(scores("hadoop"))
|
||||
|
||||
// 2. 如果对应的值不存在则使用默认值
|
||||
println(scores.getOrElse("hadoop01", 100))
|
||||
}
|
||||
```
|
||||
|
||||
### 1.3 新增/修改/删除值
|
||||
|
||||
可变映射允许进行新增、修改、删除等操作。
|
||||
|
||||
```scala
|
||||
object ScalaApp extends App {
|
||||
|
||||
val scores = scala.collection.mutable.Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||||
|
||||
// 1.如果key存在则更新
|
||||
scores("hadoop") = 100
|
||||
|
||||
// 2.如果key不存在则新增
|
||||
scores("flink") = 40
|
||||
|
||||
// 3.可以通过+=来进行多个更新或新增操作
|
||||
scores += ("spark" -> 200, "hive" -> 50)
|
||||
|
||||
// 4.可以通过-= 来移除某个键和值
|
||||
scores -= "storm"
|
||||
|
||||
for (elem <- scores) {println(elem)}
|
||||
}
|
||||
|
||||
// 输出内容如下
|
||||
(spark,200)
|
||||
(hadoop,100)
|
||||
(flink,40)
|
||||
(hive,50)
|
||||
```
|
||||
|
||||
不可变映射不允许进行新增、修改、删除等操作,但是允许由不可变映射产生新的映射。
|
||||
|
||||
```scala
|
||||
object ScalaApp extends App {
|
||||
|
||||
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||||
|
||||
val newScores = scores + ("spark" -> 200, "hive" -> 50)
|
||||
|
||||
for (elem <- scores) {println(elem)}
|
||||
|
||||
}
|
||||
|
||||
// 输出内容如下
|
||||
(hadoop,10)
|
||||
(spark,200)
|
||||
(storm,30)
|
||||
(hive,50)
|
||||
```
|
||||
|
||||
### 1.4 遍历映射
|
||||
|
||||
```java
|
||||
object ScalaApp extends App {
|
||||
|
||||
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||||
|
||||
// 1. 遍历键
|
||||
for (key <- scores.keys) { println(key) }
|
||||
|
||||
// 2. 遍历值
|
||||
for (value <- scores.values) { println(value) }
|
||||
|
||||
// 3. 遍历键值对
|
||||
for ((key, value) <- scores) { println(key + ":" + value) }
|
||||
|
||||
}
|
||||
```
|
||||
|
||||
### 1.5 产生新映射
|
||||
|
||||
可以使用`yield`关键字从现有映射产生新的映射。
|
||||
|
||||
```scala
|
||||
object ScalaApp extends App {
|
||||
|
||||
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||||
|
||||
// 1.将scores中所有的值扩大10倍
|
||||
val newScore = for ((key, value) <- scores) yield (key, value * 10)
|
||||
for (elem <- newScore) { println(elem) }
|
||||
|
||||
|
||||
// 2.将键和值互相调换
|
||||
val reversalScore: Map[Int, String] = for ((key, value) <- scores) yield (value, key)
|
||||
for (elem <- reversalScore) { println(elem) }
|
||||
|
||||
}
|
||||
|
||||
// 输出
|
||||
(hadoop,100)
|
||||
(spark,200)
|
||||
(storm,300)
|
||||
|
||||
(10,hadoop)
|
||||
(20,spark)
|
||||
(30,storm)
|
||||
```
|
||||
|
||||
### 1.6 有序映射
|
||||
|
||||
在使用Map时候,如果不指定,默认使用的是HashMap,如果想要使用`TreeMap`或者`LinkedHashMap`,则需要显式的指定。
|
||||
|
||||
```scala
|
||||
object ScalaApp extends App {
|
||||
|
||||
// 1.使用TreeMap,按照键的字典序进行排序
|
||||
val scores01 = scala.collection.mutable.TreeMap("B" -> 20, "A" -> 10, "C" -> 30)
|
||||
for (elem <- scores01) {println(elem)}
|
||||
|
||||
// 2.使用LinkedHashMap,按照键值对的插入顺序进行排序
|
||||
val scores02 = scala.collection.mutable.LinkedHashMap("B" -> 20, "A" -> 10, "C" -> 30)
|
||||
for (elem <- scores02) {println(elem)}
|
||||
}
|
||||
|
||||
// 输出
|
||||
(A,10)
|
||||
(B,20)
|
||||
(C,30)
|
||||
|
||||
(B,20)
|
||||
(A,10)
|
||||
(C,30)
|
||||
```
|
||||
|
||||
### 1.7 其他方法
|
||||
|
||||
```scala
|
||||
object ScalaApp extends App {
|
||||
|
||||
val scores = scala.collection.mutable.TreeMap("B" -> 20, "A" -> 10, "C" -> 30)
|
||||
|
||||
// 1. 获取长度
|
||||
println(scores.size)
|
||||
|
||||
// 2. 判断是否为空
|
||||
println(scores.isEmpty)
|
||||
|
||||
// 3. 判断是否包含特定的key
|
||||
println(scores.contains("A"))
|
||||
|
||||
}
|
||||
```
|
||||
|
||||
### 1.8 与Java互操作
|
||||
|
||||
```scala
|
||||
import java.util
|
||||
import scala.collection.{JavaConverters, mutable}
|
||||
|
||||
object ScalaApp extends App {
|
||||
|
||||
val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30)
|
||||
|
||||
// scala map转java map
|
||||
val javaMap: util.Map[String, Int] = JavaConverters.mapAsJavaMap(scores)
|
||||
|
||||
// java map转scala map
|
||||
val scalaMap: mutable.Map[String, Int] = JavaConverters.mapAsScalaMap(javaMap)
|
||||
|
||||
for (elem <- scalaMap) {println(elem)}
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
||||
## 二、元组(Tuple)
|
||||
|
||||
元组与数组类似,但是数组中所有的元素必须是同一种类型,而元组则可以包含不同类型的元素。
|
||||
|
||||
```scala
|
||||
scala> val tuple=(1,3.24f,"scala")
|
||||
tuple: (Int, Float, String) = (1,3.24,scala)
|
||||
```
|
||||
|
||||
### 2.1 模式匹配
|
||||
|
||||
可以通过模式匹配来进行获取元组中的值并赋予对应的变量:
|
||||
|
||||
```scala
|
||||
scala> val (a,b,c)=tuple
|
||||
a: Int = 1
|
||||
b: Float = 3.24
|
||||
c: String = scala
|
||||
```
|
||||
|
||||
如果某些位置不需要赋值,则可以使用下划线代替:
|
||||
|
||||
```scala
|
||||
scala> val (a,_,_)=tuple
|
||||
a: Int = 1
|
||||
```
|
||||
|
||||
### 2.2 Zip方法
|
||||
|
||||
```scala
|
||||
object ScalaApp extends App {
|
||||
|
||||
val array01 = Array("hadoop", "spark", "storm")
|
||||
val array02 = Array(10, 20, 30)
|
||||
|
||||
// 1.zip方法得到的是多个tuple组成的数组
|
||||
val tuples: Array[(String, Int)] = array01.zip(array02)
|
||||
// 2.也可以在zip后调用toMap方法转换为映射
|
||||
val map: Map[String, Int] = array01.zip(array02).toMap
|
||||
|
||||
for (elem <- tuples) { println(elem) }
|
||||
for (elem <- map) {println(elem)}
|
||||
}
|
||||
|
||||
// 输出
|
||||
(hadoop,10)
|
||||
(spark,20)
|
||||
(storm,30)
|
||||
|
||||
(hadoop,10)
|
||||
(spark,20)
|
||||
(storm,30)
|
||||
```
|
||||
|
||||
|
||||
|
||||
## 参考资料
|
||||
|
||||
1. Martin Odersky . Scala编程(第3版)[M] . 电子工业出版社 . 2018-1-1
|
||||
2. 凯.S.霍斯特曼 . 快学Scala(第2版)[M] . 电子工业出版社 . 2017-7
|
Loading…
x
Reference in New Issue
Block a user