scala映射和元组
This commit is contained in:
		| @@ -271,4 +271,4 @@ res6: Boolean = true | ||||
|  | ||||
| ## 参考资料 | ||||
|  | ||||
| 1. Martin Odersky(著),高宇翔(译) . Scala编程(第3版)[M] . 电子工业出版社 . 2018-1-1  | ||||
| 1. Martin Odersky . Scala编程(第3版)[M] . 电子工业出版社 . 2018-1-1  | ||||
|   | ||||
| @@ -1,5 +1,6 @@ | ||||
| # Scala 数组相关操作 | ||||
|  | ||||
|  | ||||
| <nav> | ||||
| <a href="#一定长数组">一、定长数组</a><br/> | ||||
| <a href="#二变长数组">二、变长数组</a><br/> | ||||
| <a href="#三数组遍历">三、数组遍历</a><br/> | ||||
| @@ -192,5 +193,5 @@ object ScalaApp extends App { | ||||
|  | ||||
| ## 参考资料 | ||||
|  | ||||
|  | ||||
| 1. Martin Odersky(著),高宇翔(译) . Scala编程(第3版)[M] . 电子工业出版社 . 2018-1-1   | ||||
| 1. Martin Odersky . Scala编程(第3版)[M] . 电子工业出版社 . 2018-1-1   | ||||
| 2. 凯.S.霍斯特曼  . 快学Scala(第2版)[M] . 电子工业出版社 . 2017-7 | ||||
| @@ -0,0 +1,272 @@ | ||||
| # Scala映射和元组 | ||||
|  | ||||
| ## 一、映射(Map) | ||||
|  | ||||
| ### 1.1 构造映射 | ||||
|  | ||||
| ```scala | ||||
| scala> import scala.collection.immutable.HashMap | ||||
| import scala.collection.immutable.HashMap | ||||
|  | ||||
| // 初始化一个空map | ||||
| scala> val scores01 = new HashMap[String, Int] | ||||
| scores01: scala.collection.immutable.HashMap[String,Int] = Map() | ||||
|  | ||||
| // 从指定的值初始化映射(方式一) | ||||
| scala>  val scores02 = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30) | ||||
| scores02: scala.collection.immutable.Map[String,Int] = Map(hadoop -> 10, spark -> 20, storm -> 30) | ||||
|  | ||||
| // 从指定的值初始化映射(方式二) | ||||
| scala>  val scores03 = Map(("hadoop", 10), ("spark", 20), ("storm", 30)) | ||||
| scores03: scala.collection.immutable.Map[String,Int] = Map(hadoop -> 10, spark -> 20, storm -> 30) | ||||
| ``` | ||||
|  | ||||
| 采用上面方式得到的都是不可变(immutable)映射,想要得到可变映射,则用: | ||||
|  | ||||
| ```scala | ||||
| scala> val scores04 = scala.collection.mutable.Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30) | ||||
| scores04: scala.collection.mutable.Map[String,Int] = Map(spark -> 20, hadoop -> 10, storm -> 30) | ||||
| ``` | ||||
|  | ||||
| ### 1.2 获取值 | ||||
|  | ||||
| ```scala | ||||
| object ScalaApp extends App { | ||||
|  | ||||
|   val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30) | ||||
|  | ||||
|   // 1.获取指定key对应的值 | ||||
|   println(scores("hadoop")) | ||||
|  | ||||
|   // 2. 如果对应的值不存在则使用默认值 | ||||
|   println(scores.getOrElse("hadoop01", 100)) | ||||
| } | ||||
| ``` | ||||
|  | ||||
| ### 1.3 新增/修改/删除值 | ||||
|  | ||||
| 可变映射允许进行新增、修改、删除等操作。 | ||||
|  | ||||
| ```scala | ||||
| object ScalaApp extends App { | ||||
|  | ||||
|   val scores = scala.collection.mutable.Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30) | ||||
|  | ||||
|   // 1.如果key存在则更新 | ||||
|   scores("hadoop") = 100 | ||||
|  | ||||
|   // 2.如果key不存在则新增 | ||||
|   scores("flink") = 40 | ||||
|  | ||||
|   // 3.可以通过+=来进行多个更新或新增操作 | ||||
|   scores += ("spark" -> 200, "hive" -> 50) | ||||
|  | ||||
|   // 4.可以通过-= 来移除某个键和值 | ||||
|   scores -= "storm" | ||||
|  | ||||
|   for (elem <- scores) {println(elem)} | ||||
| } | ||||
|  | ||||
| // 输出内容如下 | ||||
| (spark,200) | ||||
| (hadoop,100) | ||||
| (flink,40) | ||||
| (hive,50) | ||||
| ``` | ||||
|  | ||||
| 不可变映射不允许进行新增、修改、删除等操作,但是允许由不可变映射产生新的映射。 | ||||
|  | ||||
| ```scala | ||||
| object ScalaApp extends App { | ||||
|  | ||||
|   val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30) | ||||
|  | ||||
|   val newScores = scores + ("spark" -> 200, "hive" -> 50) | ||||
|  | ||||
|   for (elem <- scores) {println(elem)} | ||||
|  | ||||
| } | ||||
|  | ||||
| // 输出内容如下 | ||||
| (hadoop,10) | ||||
| (spark,200) | ||||
| (storm,30) | ||||
| (hive,50) | ||||
| ``` | ||||
|  | ||||
| ### 1.4 遍历映射 | ||||
|  | ||||
| ```java | ||||
| object ScalaApp extends App { | ||||
|  | ||||
|   val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30) | ||||
|  | ||||
|   // 1. 遍历键 | ||||
|   for (key <- scores.keys) { println(key) } | ||||
|  | ||||
|   // 2. 遍历值 | ||||
|   for (value <- scores.values) { println(value) } | ||||
|  | ||||
|   // 3. 遍历键值对 | ||||
|   for ((key, value) <- scores) { println(key + ":" + value) } | ||||
|  | ||||
| } | ||||
| ``` | ||||
|  | ||||
| ### 1.5 产生新映射 | ||||
|  | ||||
| 可以使用`yield`关键字从现有映射产生新的映射。 | ||||
|  | ||||
| ```scala | ||||
| object ScalaApp extends App { | ||||
|  | ||||
|   val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30) | ||||
|  | ||||
|   // 1.将scores中所有的值扩大10倍 | ||||
|   val newScore = for ((key, value) <- scores) yield (key, value * 10) | ||||
|   for (elem <- newScore) { println(elem) } | ||||
|  | ||||
|  | ||||
|   // 2.将键和值互相调换 | ||||
|   val reversalScore: Map[Int, String] = for ((key, value) <- scores) yield (value, key) | ||||
|   for (elem <- reversalScore) { println(elem) } | ||||
|  | ||||
| } | ||||
|  | ||||
| // 输出 | ||||
| (hadoop,100) | ||||
| (spark,200) | ||||
| (storm,300) | ||||
|  | ||||
| (10,hadoop) | ||||
| (20,spark) | ||||
| (30,storm) | ||||
| ``` | ||||
|  | ||||
| ### 1.6 有序映射 | ||||
|  | ||||
| 在使用Map时候,如果不指定,默认使用的是HashMap,如果想要使用`TreeMap`或者`LinkedHashMap`,则需要显式的指定。 | ||||
|  | ||||
| ```scala | ||||
| object ScalaApp extends App { | ||||
|  | ||||
|   // 1.使用TreeMap,按照键的字典序进行排序 | ||||
|   val scores01 = scala.collection.mutable.TreeMap("B" -> 20, "A" -> 10, "C" -> 30) | ||||
|   for (elem <- scores01) {println(elem)} | ||||
|  | ||||
|   // 2.使用LinkedHashMap,按照键值对的插入顺序进行排序 | ||||
|   val scores02 = scala.collection.mutable.LinkedHashMap("B" -> 20, "A" -> 10, "C" -> 30) | ||||
|   for (elem <- scores02) {println(elem)} | ||||
| } | ||||
|  | ||||
| // 输出 | ||||
| (A,10) | ||||
| (B,20) | ||||
| (C,30) | ||||
|  | ||||
| (B,20) | ||||
| (A,10) | ||||
| (C,30) | ||||
| ``` | ||||
|  | ||||
| ### 1.7 其他方法 | ||||
|  | ||||
| ```scala | ||||
| object ScalaApp extends App { | ||||
|  | ||||
|   val scores = scala.collection.mutable.TreeMap("B" -> 20, "A" -> 10, "C" -> 30) | ||||
|  | ||||
|   // 1. 获取长度 | ||||
|   println(scores.size) | ||||
|  | ||||
|   // 2. 判断是否为空 | ||||
|   println(scores.isEmpty) | ||||
|  | ||||
|   // 3. 判断是否包含特定的key | ||||
|   println(scores.contains("A")) | ||||
|  | ||||
| } | ||||
| ``` | ||||
|  | ||||
| ### 1.8 与Java互操作 | ||||
|  | ||||
| ```scala | ||||
| import java.util | ||||
| import scala.collection.{JavaConverters, mutable} | ||||
|  | ||||
| object ScalaApp extends App { | ||||
|  | ||||
|   val scores = Map("hadoop" -> 10, "spark" -> 20, "storm" -> 30) | ||||
|  | ||||
|   // scala map转java map | ||||
|   val javaMap: util.Map[String, Int] = JavaConverters.mapAsJavaMap(scores) | ||||
|  | ||||
|   // java map转scala map | ||||
|   val scalaMap: mutable.Map[String, Int] = JavaConverters.mapAsScalaMap(javaMap) | ||||
|    | ||||
|   for (elem <- scalaMap) {println(elem)} | ||||
| } | ||||
| ``` | ||||
|  | ||||
|  | ||||
|  | ||||
| ## 二、元组(Tuple) | ||||
|  | ||||
| 元组与数组类似,但是数组中所有的元素必须是同一种类型,而元组则可以包含不同类型的元素。 | ||||
|  | ||||
| ```scala | ||||
| scala> val tuple=(1,3.24f,"scala") | ||||
| tuple: (Int, Float, String) = (1,3.24,scala) | ||||
| ``` | ||||
|  | ||||
| ### 2.1  模式匹配 | ||||
|  | ||||
| 可以通过模式匹配来进行获取元组中的值并赋予对应的变量: | ||||
|  | ||||
| ```scala | ||||
| scala> val (a,b,c)=tuple | ||||
| a: Int = 1 | ||||
| b: Float = 3.24 | ||||
| c: String = scala | ||||
| ``` | ||||
|  | ||||
| 如果某些位置不需要赋值,则可以使用下划线代替: | ||||
|  | ||||
| ```scala | ||||
| scala> val (a,_,_)=tuple | ||||
| a: Int = 1 | ||||
| ``` | ||||
|  | ||||
| ### 2.2 Zip方法 | ||||
|  | ||||
| ```scala | ||||
| object ScalaApp extends App { | ||||
|  | ||||
|    val array01 = Array("hadoop", "spark", "storm") | ||||
|   val array02 = Array(10, 20, 30) | ||||
|      | ||||
|   // 1.zip方法得到的是多个tuple组成的数组 | ||||
|   val tuples: Array[(String, Int)] = array01.zip(array02) | ||||
|   // 2.也可以在zip后调用toMap方法转换为映射 | ||||
|   val map: Map[String, Int] = array01.zip(array02).toMap | ||||
|      | ||||
|   for (elem <- tuples) { println(elem) } | ||||
|   for (elem <- map) {println(elem)} | ||||
| } | ||||
|  | ||||
| // 输出 | ||||
| (hadoop,10) | ||||
| (spark,20) | ||||
| (storm,30) | ||||
|  | ||||
| (hadoop,10) | ||||
| (spark,20) | ||||
| (storm,30) | ||||
| ``` | ||||
|  | ||||
|  | ||||
|  | ||||
| ## 参考资料 | ||||
|  | ||||
| 1. Martin Odersky . Scala编程(第3版)[M] . 电子工业出版社 . 2018-1-1   | ||||
| 2. 凯.S.霍斯特曼  . 快学Scala(第2版)[M] . 电子工业出版社 . 2017-7 | ||||
		Reference in New Issue
	
	Block a user