spark sql联结操作
This commit is contained in:
@ -1,10 +1,22 @@
|
||||
## 一、简介
|
||||
# Spark SQL JOIN
|
||||
|
||||
<nav>
|
||||
<a href="#一-数据准备">一、 数据准备</a><br/>
|
||||
<a href="#二连接类型">二、连接类型</a><br/>
|
||||
<a href="#21-INNER-JOIN">2.1 INNER JOIN</a><br/>
|
||||
<a href="#22-FULL-OUTER-JOIN">2.2 FULL OUTER JOIN</a><br/>
|
||||
<a href="#23-LEFT-OUTER-JOIN"> 2.3 LEFT OUTER JOIN</a><br/>
|
||||
<a href="#24-RIGHT-OUTER-JOIN">2.4 RIGHT OUTER JOIN</a><br/>
|
||||
<a href="#25-LEFT-SEMI-JOIN">2.5 LEFT SEMI JOIN</a><br/>
|
||||
<a href="#26-LEFT-ANTI-JOIN">2.6 LEFT ANTI JOIN </a><br/>
|
||||
<a href="#27-CROSS-JOIN">2.7 CROSS JOIN</a><br/>
|
||||
<a href="#28-NATURAL-JOIN">2.8 NATURAL JOIN</a><br/>
|
||||
<a href="#三连接的执行">三、连接的执行</a><br/>
|
||||
</nav>
|
||||
|
||||
## 一、 数据准备
|
||||
|
||||
## 二、 数据准备
|
||||
|
||||
分别创建员工和部门datafame,并注册为临时视图,代码如下:
|
||||
本文主要介绍Spark的多表连接,需要预先准备测试数据。分别创建员工和部门的datafame,并注册为临时视图,代码如下:
|
||||
|
||||
```scala
|
||||
val spark = SparkSession.builder().appName("aggregations").master("local[2]").getOrCreate()
|
||||
@ -16,7 +28,7 @@ val deptDF = spark.read.json("/usr/file/json/dept.json")
|
||||
deptDF.createOrReplaceTempView("dept")
|
||||
```
|
||||
|
||||
两表字段中所有字段如下:
|
||||
两表的主要字段如下:
|
||||
|
||||
```properties
|
||||
emp员工表
|
||||
@ -41,17 +53,133 @@ dept部门表
|
||||
|
||||
|
||||
|
||||
## 三、联结操作
|
||||
## 二、连接类型
|
||||
|
||||
### 3.1 Inner Joins
|
||||
Spark中支持多种连接类型:
|
||||
|
||||
+ Inner joins : 内连接;
|
||||
+ Full Outer joins : 全外连接;
|
||||
+ Left outer joins : 左外连接;
|
||||
+ Right outer joins : 右外连接;
|
||||
+ Left semi joins : 左半连接;
|
||||
+ Left anti joins : 左反连接;
|
||||
+ Natural joins : 自然连接;
|
||||
+ Cross (or Cartesian) joins : 交叉(或笛卡尔)连接。
|
||||
|
||||
其中内,外连接,笛卡尔积均与普通关系型数据库中的相同,如下图所示:
|
||||
|
||||
<div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/sql-join.jpg"/> </div>
|
||||
|
||||
这里解释一下左半连接和左反连接,这两个连接等价于关系型数据库中的IN和NOT IN字句:
|
||||
|
||||
```sql
|
||||
-- LEFT SEMI JOIN
|
||||
SELECT * FROM emp LEFT SEMI JOIN dept ON emp.deptno = dept.deptno
|
||||
-- 等价于如下的IN语句
|
||||
SELECT * FROM emp WHERE deptno IN (SELECT deptno FROM dept)
|
||||
|
||||
-- LEFT ANTI JOIN
|
||||
SELECT * FROM emp LEFT ANTI JOIN dept ON emp.deptno = dept.deptno
|
||||
-- 等价于如下的IN语句
|
||||
SELECT * FROM emp WHERE deptno NOT IN (SELECT deptno FROM dept)
|
||||
```
|
||||
|
||||
所有连接类型的示例代码如下:
|
||||
|
||||
### 2.1 INNER JOIN
|
||||
|
||||
```scala
|
||||
// 1.定义联结表达式
|
||||
// 1.定义连接表达式
|
||||
val joinExpression = empDF.col("deptno") === deptDF.col("deptno")
|
||||
// 2.联结查询
|
||||
// 2.连接查询
|
||||
empDF.join(deptDF,joinExpression).select("ename","dname").show()
|
||||
|
||||
// 等价SQL如下:
|
||||
spark.sql("SELECT ename,dname FROM emp JOIN dept ON emp.deptno = dept.deptno").show()
|
||||
```
|
||||
|
||||
### 2.2 FULL OUTER JOIN
|
||||
|
||||
```scala
|
||||
empDF.join(deptDF, joinExpression, "outer").show()
|
||||
spark.sql("SELECT * FROM emp FULL OUTER JOIN dept ON emp.deptno = dept.deptno").show()
|
||||
```
|
||||
|
||||
### 2.3 LEFT OUTER JOIN
|
||||
|
||||
```scala
|
||||
empDF.join(deptDF, joinExpression, "left_outer").show()
|
||||
spark.sql("SELECT * FROM emp LEFT OUTER JOIN dept ON emp.deptno = dept.deptno").show()
|
||||
```
|
||||
|
||||
### 2.4 RIGHT OUTER JOIN
|
||||
|
||||
```scala
|
||||
empDF.join(deptDF, joinExpression, "right_outer").show()
|
||||
spark.sql("SELECT * FROM emp RIGHT OUTER JOIN dept ON emp.deptno = dept.deptno").show()
|
||||
```
|
||||
|
||||
### 2.5 LEFT SEMI JOIN
|
||||
|
||||
```scala
|
||||
empDF.join(deptDF, joinExpression, "left_semi").show()
|
||||
spark.sql("SELECT * FROM emp LEFT SEMI JOIN dept ON emp.deptno = dept.deptno").show()
|
||||
```
|
||||
|
||||
### 2.6 LEFT ANTI JOIN
|
||||
|
||||
```scala
|
||||
empDF.join(deptDF, joinExpression, "left_anti").show()
|
||||
spark.sql("SELECT * FROM emp LEFT ANTI JOIN dept ON emp.deptno = dept.deptno").show()
|
||||
```
|
||||
|
||||
### 2.7 CROSS JOIN
|
||||
|
||||
```scala
|
||||
empDF.join(deptDF, joinExpression, "cross").show()
|
||||
spark.sql("SELECT * FROM emp CROSS JOIN dept ON emp.deptno = dept.deptno").show()
|
||||
```
|
||||
|
||||
### 2.8 NATURAL JOIN
|
||||
|
||||
自然连接是在两张表中寻找那些数据类型和列名都相同的字段,然后自动地将他们连接起来,并返回所有符合条件的结果。
|
||||
|
||||
```scala
|
||||
spark.sql("SELECT * FROM emp NATURAL JOIN dept").show()
|
||||
```
|
||||
|
||||
以下是一个自然连接的查询结果,程序自动推断出使用两张表都存在的dept列进行连接,其实际等价于:
|
||||
|
||||
```sql
|
||||
spark.sql("SELECT * FROM emp JOIN dept ON emp.deptno = dept.deptno").show()
|
||||
```
|
||||
|
||||
<div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/spark-sql-NATURAL-JOIN.png"/> </div>
|
||||
|
||||
由于自然连接常常会产生不可预期的结果,所以并不推荐使用。
|
||||
|
||||
|
||||
|
||||
## 三、连接的执行
|
||||
|
||||
在对大表与大表之间进行连接操作时,通常都会触发shuffle join,两表的所有分区节点会进行All-to-All的通讯,这种查询通常比较昂贵,会对网络IO会造成比较大的负担。
|
||||
|
||||
<div align="center"> <img width="600px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/spark-Big-table–to–big-table.png"/> </div>
|
||||
|
||||
|
||||
|
||||
而对于大表和小表的连接操作,Spark会在一定程度上进行优化,如果小表的数据量小于Work Node上内存空间,Spark会考虑将小表的数据广播到每一个工作节点,在每个工作节点内部执行连接计算,这可以降低网络的IO,但会加大每个工作节点上的CPU负担。
|
||||
|
||||
<div align="center"> <img width="600px" src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/spark-Big-table–to–small-table.png"/> </div>
|
||||
|
||||
是否采用广播方式进行JOIN取决于程序内部的判断,如果想明确使用广播方式进行JOIN,可以在DataFrame API 中使用`broadcast`方法显示指定需要广播的小表:
|
||||
|
||||
```scala
|
||||
empDF.join(broadcast(deptDF), joinExpression).show()
|
||||
```
|
||||
|
||||
|
||||
|
||||
## 参考资料
|
||||
|
||||
1. Matei Zaharia, Bill Chambers . Spark: The Definitive Guide[M] . 2018-02
|
Reference in New Issue
Block a user