mapreduce
This commit is contained in:
@ -0,0 +1,84 @@
|
||||
package com.heibaiying;
|
||||
|
||||
import com.heibaiying.component.WordCountMapper;
|
||||
import com.heibaiying.component.WordCountReducer;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.fs.FileSystem;
|
||||
import org.apache.hadoop.fs.Path;
|
||||
import org.apache.hadoop.io.IntWritable;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.hadoop.mapreduce.Job;
|
||||
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
|
||||
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
|
||||
|
||||
import java.net.URI;
|
||||
|
||||
/**
|
||||
* 组装作业 并提交到集群运行
|
||||
*/
|
||||
public class WordCountApp {
|
||||
|
||||
|
||||
// 这里为了直观显示参数 使用了硬编码,实际开发中可以通过外部传参
|
||||
private static final String HDFS_URL = "hdfs://192.168.0.107:8020";
|
||||
private static final String HADOOP_USER_NAME = "root";
|
||||
|
||||
public static void main(String[] args) throws Exception {
|
||||
|
||||
|
||||
// 文件输入路径和输出路径由外部传参指定
|
||||
if (args.length < 2) {
|
||||
System.out.println("Input and output paths are necessary!");
|
||||
return;
|
||||
}
|
||||
|
||||
// 需要指明hadoop用户名,否则在HDFS上创建目录时可能会抛出权限不足的异常
|
||||
System.setProperty("HADOOP_USER_NAME", HADOOP_USER_NAME);
|
||||
|
||||
|
||||
Configuration configuration = new Configuration();
|
||||
// 指明HDFS的地址
|
||||
configuration.set("fs.defaultFS", HDFS_URL);
|
||||
|
||||
|
||||
// 创建一个Job
|
||||
Job job = Job.getInstance(configuration);
|
||||
|
||||
// 设置运行的主类
|
||||
job.setJarByClass(WordCountApp.class);
|
||||
|
||||
// 设置Mapper和Reducer
|
||||
job.setMapperClass(WordCountMapper.class);
|
||||
job.setReducerClass(WordCountReducer.class);
|
||||
|
||||
// 设置Mapper输出key和value的类型
|
||||
job.setMapOutputKeyClass(Text.class);
|
||||
job.setMapOutputValueClass(IntWritable.class);
|
||||
|
||||
// 设置Reducer输出key和value的类型
|
||||
job.setOutputKeyClass(Text.class);
|
||||
job.setOutputValueClass(IntWritable.class);
|
||||
|
||||
// 如果输出目录已经存在,则必须先删除,否则重复运行程序时会抛出异常
|
||||
FileSystem fileSystem = FileSystem.get(new URI(HDFS_URL), configuration, HADOOP_USER_NAME);
|
||||
Path outputPath = new Path(args[1]);
|
||||
if (fileSystem.exists(outputPath)) {
|
||||
fileSystem.delete(outputPath, true);
|
||||
}
|
||||
|
||||
|
||||
// 设置作业输入文件和输出文件的路径
|
||||
FileInputFormat.setInputPaths(job, new Path(args[0]));
|
||||
FileOutputFormat.setOutputPath(job, outputPath);
|
||||
|
||||
// 将作业提交到群集并等待它完成,参数设置为true代表打印显示对应的进度
|
||||
boolean result = job.waitForCompletion(true);
|
||||
|
||||
// 关闭之前创建的fileSystem
|
||||
fileSystem.close();
|
||||
|
||||
// 根据作业结果,终止当前运行的Java虚拟机,退出程序
|
||||
System.exit(result ? 0 : -1);
|
||||
|
||||
}
|
||||
}
|
@ -0,0 +1,87 @@
|
||||
package com.heibaiying;
|
||||
|
||||
import com.heibaiying.component.WordCountMapper;
|
||||
import com.heibaiying.component.WordCountReducer;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.fs.FileSystem;
|
||||
import org.apache.hadoop.fs.Path;
|
||||
import org.apache.hadoop.io.IntWritable;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.hadoop.mapreduce.Job;
|
||||
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
|
||||
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
|
||||
|
||||
import java.net.URI;
|
||||
|
||||
/**
|
||||
* 组装作业 并提交到集群运行
|
||||
*/
|
||||
public class WordCountCombinerApp {
|
||||
|
||||
|
||||
// 这里为了直观显示参数 使用了硬编码的形式,实际开发中可以通过外部传参
|
||||
private static final String HDFS_URL = "hdfs://192.168.0.107:8020";
|
||||
private static final String HADOOP_USER_NAME = "root";
|
||||
|
||||
public static void main(String[] args) throws Exception {
|
||||
|
||||
|
||||
// 文件输入路径和输出路径由外部传参指定
|
||||
if (args.length < 2) {
|
||||
System.out.println("Input and output paths are necessary!");
|
||||
return;
|
||||
}
|
||||
|
||||
// 需要指明hadoop用户名,否则在HDFS上创建目录时可能会抛出权限不足的异常
|
||||
System.setProperty("HADOOP_USER_NAME", HADOOP_USER_NAME);
|
||||
|
||||
|
||||
Configuration configuration = new Configuration();
|
||||
// 指明HDFS的地址
|
||||
configuration.set("fs.defaultFS", HDFS_URL);
|
||||
|
||||
|
||||
// 创建一个Job
|
||||
Job job = Job.getInstance(configuration);
|
||||
|
||||
// 设置运行的主类
|
||||
job.setJarByClass(WordCountCombinerApp.class);
|
||||
|
||||
// 设置Mapper和Reducer
|
||||
job.setMapperClass(WordCountMapper.class);
|
||||
job.setReducerClass(WordCountReducer.class);
|
||||
|
||||
// 设置Combiner
|
||||
job.setCombinerClass(WordCountReducer.class);
|
||||
|
||||
// 设置Mapper输出key和value的类型
|
||||
job.setMapOutputKeyClass(Text.class);
|
||||
job.setMapOutputValueClass(IntWritable.class);
|
||||
|
||||
// 设置Reducer输出key和value的类型
|
||||
job.setOutputKeyClass(Text.class);
|
||||
job.setOutputValueClass(IntWritable.class);
|
||||
|
||||
// 如果输出目录已经存在,则必须先删除,否则重复运行程序时会抛出异常
|
||||
FileSystem fileSystem = FileSystem.get(new URI(HDFS_URL), configuration, HADOOP_USER_NAME);
|
||||
Path outputPath = new Path(args[1]);
|
||||
if (fileSystem.exists(outputPath)) {
|
||||
fileSystem.delete(outputPath, true);
|
||||
}
|
||||
|
||||
|
||||
// 设置作业输入文件和输出文件的路径
|
||||
FileInputFormat.setInputPaths(job, new Path(args[0]));
|
||||
FileOutputFormat.setOutputPath(job, outputPath);
|
||||
|
||||
// 将作业提交到群集并等待它完成,参数设置为true代表打印显示对应的进度
|
||||
boolean result = job.waitForCompletion(true);
|
||||
|
||||
// 关闭之前创建的fileSystem
|
||||
fileSystem.close();
|
||||
|
||||
// 根据作业结果,终止当前运行的Java虚拟机,退出程序
|
||||
System.exit(result ? 0 : -1);
|
||||
|
||||
}
|
||||
}
|
@ -0,0 +1,95 @@
|
||||
package com.heibaiying;
|
||||
|
||||
import com.heibaiying.component.CustomPartitioner;
|
||||
import com.heibaiying.component.WordCountMapper;
|
||||
import com.heibaiying.component.WordCountReducer;
|
||||
import com.heibaiying.utils.WordCountDataUtils;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.fs.FileSystem;
|
||||
import org.apache.hadoop.fs.Path;
|
||||
import org.apache.hadoop.io.IntWritable;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.hadoop.mapreduce.Job;
|
||||
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
|
||||
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
|
||||
|
||||
import java.net.URI;
|
||||
|
||||
/**
|
||||
* 组装作业 并提交到集群运行
|
||||
*/
|
||||
public class WordCountCombinerPartitionerApp {
|
||||
|
||||
|
||||
// 这里为了直观显示参数 使用了硬编码的形式,实际开发中可以通过外部传参
|
||||
private static final String HDFS_URL = "hdfs://192.168.0.107:8020";
|
||||
private static final String HADOOP_USER_NAME = "root";
|
||||
|
||||
public static void main(String[] args) throws Exception {
|
||||
|
||||
|
||||
// 文件输入路径和输出路径由外部传参指定
|
||||
if (args.length < 2) {
|
||||
System.out.println("Input and output paths are necessary!");
|
||||
return;
|
||||
}
|
||||
|
||||
// 需要指明hadoop用户名,否则在HDFS上创建目录时可能会抛出权限不足的异常
|
||||
System.setProperty("HADOOP_USER_NAME", HADOOP_USER_NAME);
|
||||
|
||||
|
||||
Configuration configuration = new Configuration();
|
||||
// 指明HDFS的地址
|
||||
configuration.set("fs.defaultFS", HDFS_URL);
|
||||
|
||||
|
||||
// 创建一个Job
|
||||
Job job = Job.getInstance(configuration);
|
||||
|
||||
// 设置运行的主类
|
||||
job.setJarByClass(WordCountCombinerPartitionerApp.class);
|
||||
|
||||
// 设置Mapper和Reducer
|
||||
job.setMapperClass(WordCountMapper.class);
|
||||
job.setReducerClass(WordCountReducer.class);
|
||||
|
||||
// 设置Combiner
|
||||
job.setCombinerClass(WordCountReducer.class);
|
||||
|
||||
|
||||
// 设置自定义分区规则
|
||||
job.setPartitionerClass(CustomPartitioner.class);
|
||||
// 设置reduce个数
|
||||
job.setNumReduceTasks(WordCountDataUtils.WORD_LIST.size());
|
||||
|
||||
// 设置Mapper输出key和value的类型
|
||||
job.setMapOutputKeyClass(Text.class);
|
||||
job.setMapOutputValueClass(IntWritable.class);
|
||||
|
||||
// 设置Reducer输出key和value的类型
|
||||
job.setOutputKeyClass(Text.class);
|
||||
job.setOutputValueClass(IntWritable.class);
|
||||
|
||||
// 如果输出目录已经存在,则必须先删除,否则重复运行程序时会抛出异常
|
||||
FileSystem fileSystem = FileSystem.get(new URI(HDFS_URL), configuration, HADOOP_USER_NAME);
|
||||
Path outputPath = new Path(args[1]);
|
||||
if (fileSystem.exists(outputPath)) {
|
||||
fileSystem.delete(outputPath, true);
|
||||
}
|
||||
|
||||
|
||||
// 设置作业输入文件和输出文件的路径
|
||||
FileInputFormat.setInputPaths(job, new Path(args[0]));
|
||||
FileOutputFormat.setOutputPath(job, outputPath);
|
||||
|
||||
// 将作业提交到群集并等待它完成,参数设置为true代表打印显示对应的进度
|
||||
boolean result = job.waitForCompletion(true);
|
||||
|
||||
// 关闭之前创建的fileSystem
|
||||
fileSystem.close();
|
||||
|
||||
// 根据作业结果,终止当前运行的Java虚拟机,退出程序
|
||||
System.exit(result ? 0 : -1);
|
||||
|
||||
}
|
||||
}
|
@ -0,0 +1,16 @@
|
||||
package com.heibaiying.component;
|
||||
|
||||
import com.heibaiying.utils.WordCountDataUtils;
|
||||
import org.apache.hadoop.io.IntWritable;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.hadoop.mapreduce.Partitioner;
|
||||
|
||||
/**
|
||||
* 自定义partitioner,按照单词分区
|
||||
*/
|
||||
public class CustomPartitioner extends Partitioner<Text, IntWritable> {
|
||||
|
||||
public int getPartition(Text text, IntWritable intWritable, int numPartitions) {
|
||||
return WordCountDataUtils.WORD_LIST.indexOf(text.toString());
|
||||
}
|
||||
}
|
@ -0,0 +1,23 @@
|
||||
package com.heibaiying.component;
|
||||
|
||||
import org.apache.hadoop.io.IntWritable;
|
||||
import org.apache.hadoop.io.LongWritable;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.hadoop.mapreduce.Mapper;
|
||||
|
||||
import java.io.IOException;
|
||||
|
||||
/**
|
||||
* 将每行数据按照指定分隔符进行拆分
|
||||
*/
|
||||
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
|
||||
|
||||
@Override
|
||||
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
|
||||
String[] words = value.toString().split("\t");
|
||||
for (String word : words) {
|
||||
context.write(new Text(word), new IntWritable(1));
|
||||
}
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,22 @@
|
||||
package com.heibaiying.component;
|
||||
|
||||
import org.apache.hadoop.io.IntWritable;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.hadoop.mapreduce.Reducer;
|
||||
|
||||
import java.io.IOException;
|
||||
|
||||
/**
|
||||
* 进行词频统计
|
||||
*/
|
||||
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
|
||||
|
||||
@Override
|
||||
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
|
||||
int count = 0;
|
||||
for (IntWritable value : values) {
|
||||
count += value.get();
|
||||
}
|
||||
context.write(key, new IntWritable(count));
|
||||
}
|
||||
}
|
@ -0,0 +1,91 @@
|
||||
package com.heibaiying.utils;
|
||||
|
||||
import org.apache.commons.lang3.StringUtils;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.fs.FSDataOutputStream;
|
||||
import org.apache.hadoop.fs.FileSystem;
|
||||
import org.apache.hadoop.fs.Path;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.net.URI;
|
||||
import java.nio.file.Files;
|
||||
import java.nio.file.Paths;
|
||||
import java.nio.file.StandardOpenOption;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.Random;
|
||||
|
||||
/**
|
||||
* 产生词频统计模拟数据
|
||||
*/
|
||||
public class WordCountDataUtils {
|
||||
|
||||
public static final List<String> WORD_LIST = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive");
|
||||
|
||||
|
||||
/**
|
||||
* 模拟产生词频数据
|
||||
*
|
||||
* @return 词频数据
|
||||
*/
|
||||
private static String generateData() {
|
||||
StringBuilder builder = new StringBuilder();
|
||||
for (int i = 0; i < 1000; i++) {
|
||||
Collections.shuffle(WORD_LIST);
|
||||
Random random = new Random();
|
||||
int endIndex = random.nextInt(WORD_LIST.size()) % (WORD_LIST.size()) + 1;
|
||||
String line = StringUtils.join(WORD_LIST.toArray(), "\t", 0, endIndex);
|
||||
builder.append(line).append("\n");
|
||||
}
|
||||
return builder.toString();
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* 模拟产生词频数据并输出到本地
|
||||
*
|
||||
* @param outputPath 输出文件路径
|
||||
*/
|
||||
private static void generateDataToLocal(String outputPath) {
|
||||
try {
|
||||
java.nio.file.Path path = Paths.get(outputPath);
|
||||
if (Files.exists(path)) {
|
||||
Files.delete(path);
|
||||
}
|
||||
Files.write(path, generateData().getBytes(), StandardOpenOption.CREATE);
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 模拟产生词频数据并输出到HDFS
|
||||
*
|
||||
* @param hdfsUrl HDFS地址
|
||||
* @param user hadoop用户名
|
||||
* @param outputPathString 存储到HDFS上的路径
|
||||
*/
|
||||
private static void generateDataToHDFS(String hdfsUrl, String user, String outputPathString) {
|
||||
FileSystem fileSystem = null;
|
||||
try {
|
||||
fileSystem = FileSystem.get(new URI(hdfsUrl), new Configuration(), user);
|
||||
Path outputPath = new Path(outputPathString);
|
||||
if (fileSystem.exists(outputPath)) {
|
||||
fileSystem.delete(outputPath, true);
|
||||
}
|
||||
FSDataOutputStream out = fileSystem.create(outputPath);
|
||||
out.write(generateData().getBytes());
|
||||
out.flush();
|
||||
out.close();
|
||||
fileSystem.close();
|
||||
} catch (Exception e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
//generateDataToLocal("input.txt");
|
||||
generateDataToHDFS("hdfs://192.168.0.107:8020", "root", "/wordcount/input.txt");
|
||||
}
|
||||
}
|
@ -0,0 +1,9 @@
|
||||
log4j.rootLogger=INFO,CONSOLE
|
||||
log4j.addivity.org.apache=false
|
||||
|
||||
log4j.appender.CONSOLE=org.apache.log4j.ConsoleAppender
|
||||
log4j.appender.CONSOLE.Threshold=INFO
|
||||
log4j.appender.CONSOLE.layout.ConversionPattern=%d{yyyy-MM-dd HH\:mm\:ss} -%-4r [%t] %-5p %x - %m%n
|
||||
log4j.appender.CONSOLE.Target=System.out
|
||||
log4j.appender.CONSOLE.Encoding=UTF-8
|
||||
log4j.appender.CONSOLE.layout=org.apache.log4j.PatternLayout
|
Reference in New Issue
Block a user