diff --git a/code/spark/spark-core/file/emp.json b/code/spark/spark-core/file/emp.json new file mode 100644 index 0000000..03af1f5 --- /dev/null +++ b/code/spark/spark-core/file/emp.json @@ -0,0 +1,14 @@ +{"EMPNO": 7369,"ENAME": "SMITH","JOB": "CLERK","MGR": 7902,"HIREDATE": "1980-12-17 00:00:00","SAL": 800.00,"COMM": null,"DEPTNO": 20} +{"EMPNO": 7499,"ENAME": "ALLEN","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-02-20 00:00:00","SAL": 1600.00,"COMM": 300.00,"DEPTNO": 30} +{"EMPNO": 7521,"ENAME": "WARD","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-02-22 00:00:00","SAL": 1250.00,"COMM": 500.00,"DEPTNO": 30} +{"EMPNO": 7566,"ENAME": "JONES","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-04-02 00:00:00","SAL": 2975.00,"COMM": null,"DEPTNO": 20} +{"EMPNO": 7654,"ENAME": "MARTIN","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-09-28 00:00:00","SAL": 1250.00,"COMM": 1400.00,"DEPTNO": 30} +{"EMPNO": 7698,"ENAME": "BLAKE","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-05-01 00:00:00","SAL": 2850.00,"COMM": null,"DEPTNO": 30} +{"EMPNO": 7782,"ENAME": "CLARK","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-06-09 00:00:00","SAL": 2450.00,"COMM": null,"DEPTNO": 10} +{"EMPNO": 7788,"ENAME": "SCOTT","JOB": "ANALYST","MGR": 7566,"HIREDATE": "1987-04-19 00:00:00","SAL": 1500.00,"COMM": null,"DEPTNO": 20} +{"EMPNO": 7839,"ENAME": "KING","JOB": "PRESIDENT","MGR": null,"HIREDATE": "1981-11-17 00:00:00","SAL": 5000.00,"COMM": null,"DEPTNO": 10} +{"EMPNO": 7844,"ENAME": "TURNER","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-09-08 00:00:00","SAL": 1500.00,"COMM": 0.00,"DEPTNO": 30} +{"EMPNO": 7876,"ENAME": "ADAMS","JOB": "CLERK","MGR": 7788,"HIREDATE": "1987-05-23 00:00:00","SAL": 1100.00,"COMM": null,"DEPTNO": 20} +{"EMPNO": 7900,"ENAME": "JAMES","JOB": "CLERK","MGR": 7698,"HIREDATE": "1981-12-03 00:00:00","SAL": 950.00,"COMM": null,"DEPTNO": 30} +{"EMPNO": 7902,"ENAME": "FORD","JOB": "ANALYST","MGR": 7566,"HIREDATE": "1981-12-03 00:00:00","SAL": 3000.00,"COMM": null,"DEPTNO": 20} +{"EMPNO": 7934,"ENAME": "MILLER","JOB": "CLERK","MGR": 7782,"HIREDATE": "1982-01-23 00:00:00","SAL": 1300.00,"COMM": null,"DEPTNO": 10} \ No newline at end of file diff --git a/code/spark/spark-core/src/main/java/rdd/scala/SparkSqlApp.scala b/code/spark/spark-core/src/main/java/rdd/scala/SparkSqlApp.scala new file mode 100644 index 0000000..c70af1f --- /dev/null +++ b/code/spark/spark-core/src/main/java/rdd/scala/SparkSqlApp.scala @@ -0,0 +1,65 @@ +package rdd.scala + +import org.apache.spark.sql.expressions.Aggregator +import org.apache.spark.sql.{Encoder, Encoders, SparkSession, functions} + +// 1.定义员工类,对于可能存在null值的字段需要使用Option进行包装 +case class Emp(ename: String, comm: scala.Option[Double], deptno: Long, empno: Long, + hiredate: String, job: String, mgr: scala.Option[Long], sal: Double) + +// 2.定义聚合操作的中间输出类型 +case class SumAndCount(var sum: Double, var count: Long) + +/* 3.自定义聚合函数 + * @IN 聚合操作的输入类型 + * @BUF reduction操作输出值的类型 + * @OUT 聚合操作的输出类型 + */ +object MyAverage extends Aggregator[Emp, SumAndCount, Double] { + + + // 4.用于聚合操作的的初始零值 + override def zero: SumAndCount = SumAndCount(0, 0) + + + // 5.同一分区中的reduce操作 + override def reduce(avg: SumAndCount, emp: Emp): SumAndCount = { + avg.sum += emp.sal + avg.count += 1 + avg + } + + // 6.不同分区中的merge操作 + override def merge(avg1: SumAndCount, avg2: SumAndCount): SumAndCount = { + avg1.sum += avg2.sum + avg1.count += avg2.count + avg1 + } + + // 7.定义最终的输出类型 + override def finish(reduction: SumAndCount): Double = reduction.sum / reduction.count + + // 8.中间类型的编码转换 + override def bufferEncoder: Encoder[SumAndCount] = Encoders.product + + // 9.输出类型的编码转换 + override def outputEncoder: Encoder[Double] = Encoders.scalaDouble +} + +object SparkSqlApp { + + // 测试方法 + def main(args: Array[String]): Unit = { + + val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate() + import spark.implicits._ + val ds = spark.read.json("file/emp.json").as[Emp] + + // 10.使用内置avg()函数和自定义函数分别进行计算,验证自定义函数是否正确 + val myAvg = ds.select(MyAverage.toColumn.name("average_sal")).first() + val avg = ds.select(functions.avg(ds.col("sal"))).first().get(0) + + println("自定义average函数 : " + myAvg) + println("内置的average函数 : " + avg) + } +} diff --git a/code/spark/spark-core/src/main/java/rdd/scala/SparkSqlTest.scala b/code/spark/spark-core/src/main/java/rdd/scala/SparkSqlTest.scala deleted file mode 100644 index 1907cf2..0000000 --- a/code/spark/spark-core/src/main/java/rdd/scala/SparkSqlTest.scala +++ /dev/null @@ -1,57 +0,0 @@ -package rdd.scala - -import org.apache.spark.sql.{Dataset, SparkSession} - - -object SparkSqlTest extends App { - - - - val spark = SparkSession.builder().appName("Spark SQL basic example").config("spark.some.config.option", "some-value").getOrCreate() - - val dataFrames = spark.read.json("/usr/file/people.json") - - df.select("name").show() - - df.printSchema() - - - - - import spark.implicits._ - - val primitiveDS = Seq(1, 2, 3).toDS() - primitiveDS.printSchema() - primitiveDS.map(_ + 1).collect() - - peopleDS.select("name").show() //失败 - peopleDS.dtypes - peopleDS.printSchema() - peopleDS.toDF() - // Encoders are created for case classes - - /* 1.此时把selected写成为selected ,编译器没有任何提示 */ - spark.sql("selected name from emp") - - /* 2.此时把selected写成为selected ,编译器有提示; 但是把字段名称name写成了nameEd ,编译器没有任何提示*/ - val dataFrames = spark.read.json("people.json") - dataFrames.selected("nameEd").show() - dataFrames.map(line=>line.name) - - case class Person(name: String, age: Long) - - /* 3.此时最为严格,语法和字段名称错误都被检测出来*/ - val dataSet: Dataset[Person] = spark.read.json("people.json").as[Person] - dataSet.selected("name") - dataSet.map(line=>line.name) - dataSet.map(line=>line.nameEd) - - /* 4.即使在由RDD转换为dataFrame时候指定了类型Person,依然无法提示字段名称*/ - val peopleDF = spark.sparkContext - .textFile("people.json") - .map(_.split(",")) - .map(attributes => Person(attributes(0), attributes(1).trim.toInt)) - .toDF() - peopleDF.map(line=>line.name) - -} diff --git a/code/spark/spark-core/src/main/java/rdd/scala/TransformationTest.scala b/code/spark/spark-core/src/main/java/rdd/scala/TransformationTest.scala index 1229dae..1b3f03e 100644 --- a/code/spark/spark-core/src/main/java/rdd/scala/TransformationTest.scala +++ b/code/spark/spark-core/src/main/java/rdd/scala/TransformationTest.scala @@ -67,7 +67,7 @@ class TransformationTest { @Test def sample(): Unit = { val list = List(1, 2, 3, 4, 5, 6) - sc.parallelize(list).sample(withReplacement = false, 0.5).foreach(println) + sc.parallelize(list).sample(withReplacement = false, fraction = 0.5).foreach(println) } diff --git a/notes/Spark-Transformation和Action.md b/notes/Spark-Transformation和Action.md index 5ea245a..eb44935 100644 --- a/notes/Spark-Transformation和Action.md +++ b/notes/Spark-Transformation和Action.md @@ -144,7 +144,7 @@ sc.parallelize(list, 3).mapPartitionsWithIndex((index, iterator) => { ```scala val list = List(1, 2, 3, 4, 5, 6) -sc.parallelize(list).sample(withReplacement = false, 0.5).foreach(println) +sc.parallelize(list).sample(withReplacement = false, fraction = 0.5).foreach(println) ``` ### 1.7 union diff --git a/notes/SparkSQL-API基本使用.md b/notes/SparkSQL-API基本使用.md new file mode 100644 index 0000000..dbcd47b --- /dev/null +++ b/notes/SparkSQL-API基本使用.md @@ -0,0 +1,345 @@ +# SparkSQL API基本使用 + +## 一、创建DataFrames + +Spark中所有功能的入口点是`SparkSession`,可以使用`SparkSession.builder()`创建。创建后应用程序就可以从现有RDD,Hive表或Spark数据源创建DataFrame。如下所示: + +```scala +val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate() +val df = spark.read.json("/usr/file/emp.json") +df.show() + +// 建议在进行spark SQL编程前导入下面的隐式转换,因为DataFrames和dataSets中很多操作都依赖了隐式转换 +import spark.implicits._ +``` + +这里可以启动`spark-shell`进行测试,需要注意的是`spark-shell`启动后会自动创建一个名为`spark`的`SparkSession`,在命令行中可以直接引用即可: + +![spark-sql-shell](D:\BigData-Notes\pictures\spark-sql-shell.png) + +## 二、DataFrames基本操作 + +### 2.1 printSchema + +```scala +// 以树形结构打印dataframe的schema信息 +df.printSchema() +``` + +![spark-scheme](D:\BigData-Notes\pictures\spark-scheme.png) + +### 2.2 使用DataFrame API进行基本查询 + +```scala +// 查询员工姓名及工作 +df.select($"ename", $"job").show() + +// 查询工资大于2000的员工信息 +df.filter($"sal" > 2000).show() + +// 分组统计部门人数 +df.groupBy("deptno").count().show() +``` + +### 2.3 使用SQL进行基本查询 + +```scala +// 首先需要将DataFrame注册为临时视图 +df.createOrReplaceTempView("emp") + +// 查询员工姓名及工作 +spark.sql("SELECT ename,job FROM emp").show() + +// 查询工资大于2000的员工信息 +spark.sql("SELECT * FROM emp where sal > 2000").show() + +// 分组统计部门人数 +spark.sql("SELECT deptno,count(ename) FROM emp group by deptno").show() +``` + +### 2.4 全局临时视图 + +上面使用`createOrReplaceTempView`创建的是会话临时视图,它的生命周期仅限于会话范围,会随会话的结束而结束。 + +你也可以使用`createGlobalTempView`创建全局临时视图,全局临时视图可以在所有会话之间共享,并直到整个Spark应用程序终止才会消失。全局临时视图被定义在内置的`global_temp`数据库下,需要使用限定名称进行引用,如`SELECT * FROM global_temp.view1`。 + +```scala +// 注册为全局临时视图 +df.createGlobalTempView("gemp") + +// 查询员工姓名及工作,使用限定名称进行引用 +spark.sql("SELECT ename,job FROM global_temp.gemp").show() + +// 查询工资大于2000的员工信息,使用限定名称进行引用 +spark.sql("SELECT * FROM global_temp.gemp where sal > 2000").show() + +// 分组统计部门人数,使用限定名称进行引用 +spark.sql("SELECT deptno,count(ename) FROM global_temp.gemp group by deptno").show() +``` + +## 三、创建Datasets + +### 3.1 由外部数据集创建 + +```scala +// 1.需要导入隐式转换 +import spark.implicits._ + +// 2.创建case class,等价于Java Bean +case class Emp(ename: String, comm: Double, deptno: Long, empno: Long, + hiredate: String, job: String, mgr: Long, sal: Double) + +// 3.由外部数据集创建Datasets +val ds = spark.read.json("/usr/file/emp.json").as[Emp] +ds.show() +``` + +### 3.2 由内部数据集创建 + +```scala +// 1.需要导入隐式转换 +import spark.implicits._ + +// 2.创建case class,等价于Java Bean +case class Emp(ename: String, comm: Double, deptno: Long, empno: Long, + hiredate: String, job: String, mgr: Long, sal: Double) + +// 3.由内部数据集创建Datasets +val caseClassDS = Seq(Emp("ALLEN", 300.0, 30, 7499, "1981-02-20 00:00:00", "SALESMAN", 7698, 1600.0), + Emp("JONES", 300.0, 30, 7499, "1981-02-20 00:00:00", "SALESMAN", 7698, 1600.0)) + .toDS() +caseClassDS.show() +``` + + + +## 四、DataFrames与Datasets互相转换 + +Spark提供了非常简单的转换方法用于DataFrames与Datasets互相转换,示例如下: + +```shell +# DataFrames转Datasets +scala> df.as[Emp] +res1: org.apache.spark.sql.Dataset[Emp] = [COMM: double, DEPTNO: bigint ... 6 more fields] + +# Datasets转DataFrames +scala> ds.toDF() +res2: org.apache.spark.sql.DataFrame = [COMM: double, DEPTNO: bigint ... 6 more fields] +``` + + + +## 五、RDDs转换为DataFrames\Datasets + +Spark支持两种方式把RDD转换为DataFrames,分别是使用反射推断和指定schema转换。 + +### 5.1 使用反射推断 + +```scala +// 1.导入隐式转换 +import spark.implicits._ + +// 2.创建部门类 +case class Dept(deptno: Long, dname: String, loc: String) + +// 3.创建RDD并转换为dataSet +val rddToDS = spark.sparkContext + .textFile("/usr/file/dept.txt") + .map(_.split("\t")) + .map(line => Dept(line(0).trim.toLong, line(1), line(2))) + .toDS() // 如果调用toDF()则转换为dataFrame +``` + +### 5.2 以编程方式指定Schema + +```scala +import org.apache.spark.sql.Row +import org.apache.spark.sql.types._ + + +// 1.定义每个列的列类型 +val fields = Array(StructField("deptno", LongType, nullable = true), + StructField("dname", StringType, nullable = true), + StructField("loc", StringType, nullable = true)) + +// 2.创建schema +val schema = StructType(fields) + +// 3.创建RDD +val deptRDD = spark.sparkContext.textFile("/usr/file/dept.txt") +val rowRDD = deptRDD.map(_.split("\t")).map(line => Row(line(0).toLong, line(1), line(2))) + + +// 4.将RDD转换为dataFrame +val deptDF = spark.createDataFrame(rowRDD, schema) +deptDF.show() +``` + +## 六、使用自定义聚合函数 + +Scala提供了两种自定义聚合函数的方法,分别如下: + ++ 有类型的自定义聚合函数,主要适用于DataSets; ++ 无类型的自定义聚合函数,主要适用于DataFrames。 + +以下分别使用两种方式来自定义一个求平均值的聚合函数,这里以计算员工平均工资为例。两种自定义方式分别如下: + +### 6.1 有类型的自定义函数 + +```scala +import org.apache.spark.sql.expressions.Aggregator +import org.apache.spark.sql.{Encoder, Encoders, SparkSession, functions} + +// 1.定义员工类,对于可能存在null值的字段需要使用Option进行包装 +case class Emp(ename: String, comm: scala.Option[Double], deptno: Long, empno: Long, + hiredate: String, job: String, mgr: scala.Option[Long], sal: Double) + +// 2.定义聚合操作的中间输出类型 +case class SumAndCount(var sum: Double, var count: Long) + +/* 3.自定义聚合函数 + * @IN 聚合操作的输入类型 + * @BUF reduction操作输出值的类型 + * @OUT 聚合操作的输出类型 + */ +object MyAverage extends Aggregator[Emp, SumAndCount, Double] { + + // 4.用于聚合操作的的初始零值 + override def zero: SumAndCount = SumAndCount(0, 0) + + // 5.同一分区中的reduce操作 + override def reduce(avg: SumAndCount, emp: Emp): SumAndCount = { + avg.sum += emp.sal + avg.count += 1 + avg + } + + // 6.不同分区中的merge操作 + override def merge(avg1: SumAndCount, avg2: SumAndCount): SumAndCount = { + avg1.sum += avg2.sum + avg1.count += avg2.count + avg1 + } + + // 7.定义最终的输出类型 + override def finish(reduction: SumAndCount): Double = reduction.sum / reduction.count + + // 8.中间类型的编码转换 + override def bufferEncoder: Encoder[SumAndCount] = Encoders.product + + // 9.输出类型的编码转换 + override def outputEncoder: Encoder[Double] = Encoders.scalaDouble +} + +object SparkSqlApp { + + // 测试方法 + def main(args: Array[String]): Unit = { + + val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate() + import spark.implicits._ + val ds = spark.read.json("file/emp.json").as[Emp] + + // 10.使用内置avg()函数和自定义函数分别进行计算,验证自定义函数是否正确 + val myAvg = ds.select(MyAverage.toColumn.name("average_sal")).first() + val avg = ds.select(functions.avg(ds.col("sal"))).first().get(0) + + println("自定义average函数 : " + myAvg) + println("内置的average函数 : " + avg) + } +} +``` + +自定义聚合函数需要实现的方法比较多,这里以绘图的方式来演示其执行流程,以及每个方法的作用: + +![spark-sql-自定义函数](D:\BigData-Notes\pictures\spark-sql-自定义函数.png) + + + +关于`zero`,`reduce`,`merge`,`finish`方法的作用在上图都有说明,这里解释一下中间类型和输出类型的编码转换,这个写法比较固定,基本上就是两种情况: + ++ 自定义类型case class或者元组就使用`Encoders.product`方法; ++ 基本类型就使用其对应名称的方法,如`scalaByte `,`scalaFloat`,`scalaShort`等。 + +```scala +override def bufferEncoder: Encoder[SumAndCount] = Encoders.product +override def outputEncoder: Encoder[Double] = Encoders.scalaDouble +``` + + + +### 6.2 无类型的自定义聚合函数 + +理解了有类型的自定义聚合函数后,无类型的定义方式也基本相同,代码如下: + +```scala +import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction} +import org.apache.spark.sql.types._ +import org.apache.spark.sql.{Row, SparkSession} + +object MyAverage extends UserDefinedAggregateFunction { + // 1.聚合操作输入参数的类型,字段名称可以自定义 + def inputSchema: StructType = StructType(StructField("MyInputColumn", LongType) :: Nil) + + // 2.聚合操作中间值的类型,字段名称可以自定义 + def bufferSchema: StructType = { + StructType(StructField("sum", LongType) :: StructField("MyCount", LongType) :: Nil) + } + + // 3.聚合操作输出参数的类型 + def dataType: DataType = DoubleType + + // 4.此函数是否始终在相同输入上返回相同的输出,通常为true + def deterministic: Boolean = true + + // 5.定义零值 + def initialize(buffer: MutableAggregationBuffer): Unit = { + buffer(0) = 0L + buffer(1) = 0L + } + + // 6.同一分区中的reduce操作 + def update(buffer: MutableAggregationBuffer, input: Row): Unit = { + if (!input.isNullAt(0)) { + buffer(0) = buffer.getLong(0) + input.getLong(0) + buffer(1) = buffer.getLong(1) + 1 + } + } + + // 7.不同分区中的merge操作 + def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = { + buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0) + buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1) + } + + // 8.计算最终的输出值 + def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble / buffer.getLong(1) +} + +object SparkSqlApp { + + // 测试方法 + def main(args: Array[String]): Unit = { + + val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate() + // 9.注册自定义的聚合函数 + spark.udf.register("myAverage", MyAverage) + + val df = spark.read.json("file/emp.json") + df.createOrReplaceTempView("emp") + + // 10.使用自定义函数和内置函数分别进行计算 + val myAvg = spark.sql("SELECT myAverage(sal) as avg_sal FROM emp").first() + val avg = spark.sql("SELECT avg(sal) as avg_sal FROM emp").first() + + println("自定义average函数 : " + myAvg) + println("内置的average函数 : " + avg) + } +} +``` + + + +## 参考资料 + +[Spark SQL, DataFrames and Datasets Guide > Getting Started](https://spark.apache.org/docs/latest/sql-getting-started.html) \ No newline at end of file diff --git a/pictures/spark-scheme.png b/pictures/spark-scheme.png new file mode 100644 index 0000000..a4b8dbd Binary files /dev/null and b/pictures/spark-scheme.png differ diff --git a/pictures/spark-sql-shell.png b/pictures/spark-sql-shell.png new file mode 100644 index 0000000..dc31c06 Binary files /dev/null and b/pictures/spark-sql-shell.png differ diff --git a/pictures/spark-sql-自定义函数.png b/pictures/spark-sql-自定义函数.png new file mode 100644 index 0000000..abb1775 Binary files /dev/null and b/pictures/spark-sql-自定义函数.png differ diff --git a/resources/dept.json b/resources/dept.json new file mode 100644 index 0000000..7a50976 --- /dev/null +++ b/resources/dept.json @@ -0,0 +1,4 @@ +{"DEPTNO": 10,"DNAME": "ACCOUNTING","LOC": "NEW YORK"} +{"DEPTNO": 20,"DNAME": "RESEARCH","LOC": "DALLAS"} +{"DEPTNO": 30,"DNAME": "SALES","LOC": "CHICAGO"} +{"DEPTNO": 40,"DNAME": "OPERATIONS","LOC": "BOSTON"} \ No newline at end of file diff --git a/resources/emp.json b/resources/emp.json new file mode 100644 index 0000000..03af1f5 --- /dev/null +++ b/resources/emp.json @@ -0,0 +1,14 @@ +{"EMPNO": 7369,"ENAME": "SMITH","JOB": "CLERK","MGR": 7902,"HIREDATE": "1980-12-17 00:00:00","SAL": 800.00,"COMM": null,"DEPTNO": 20} +{"EMPNO": 7499,"ENAME": "ALLEN","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-02-20 00:00:00","SAL": 1600.00,"COMM": 300.00,"DEPTNO": 30} +{"EMPNO": 7521,"ENAME": "WARD","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-02-22 00:00:00","SAL": 1250.00,"COMM": 500.00,"DEPTNO": 30} +{"EMPNO": 7566,"ENAME": "JONES","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-04-02 00:00:00","SAL": 2975.00,"COMM": null,"DEPTNO": 20} +{"EMPNO": 7654,"ENAME": "MARTIN","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-09-28 00:00:00","SAL": 1250.00,"COMM": 1400.00,"DEPTNO": 30} +{"EMPNO": 7698,"ENAME": "BLAKE","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-05-01 00:00:00","SAL": 2850.00,"COMM": null,"DEPTNO": 30} +{"EMPNO": 7782,"ENAME": "CLARK","JOB": "MANAGER","MGR": 7839,"HIREDATE": "1981-06-09 00:00:00","SAL": 2450.00,"COMM": null,"DEPTNO": 10} +{"EMPNO": 7788,"ENAME": "SCOTT","JOB": "ANALYST","MGR": 7566,"HIREDATE": "1987-04-19 00:00:00","SAL": 1500.00,"COMM": null,"DEPTNO": 20} +{"EMPNO": 7839,"ENAME": "KING","JOB": "PRESIDENT","MGR": null,"HIREDATE": "1981-11-17 00:00:00","SAL": 5000.00,"COMM": null,"DEPTNO": 10} +{"EMPNO": 7844,"ENAME": "TURNER","JOB": "SALESMAN","MGR": 7698,"HIREDATE": "1981-09-08 00:00:00","SAL": 1500.00,"COMM": 0.00,"DEPTNO": 30} +{"EMPNO": 7876,"ENAME": "ADAMS","JOB": "CLERK","MGR": 7788,"HIREDATE": "1987-05-23 00:00:00","SAL": 1100.00,"COMM": null,"DEPTNO": 20} +{"EMPNO": 7900,"ENAME": "JAMES","JOB": "CLERK","MGR": 7698,"HIREDATE": "1981-12-03 00:00:00","SAL": 950.00,"COMM": null,"DEPTNO": 30} +{"EMPNO": 7902,"ENAME": "FORD","JOB": "ANALYST","MGR": 7566,"HIREDATE": "1981-12-03 00:00:00","SAL": 3000.00,"COMM": null,"DEPTNO": 20} +{"EMPNO": 7934,"ENAME": "MILLER","JOB": "CLERK","MGR": 7782,"HIREDATE": "1982-01-23 00:00:00","SAL": 1300.00,"COMM": null,"DEPTNO": 10} \ No newline at end of file