strom集成其他框架

This commit is contained in:
罗祥
2019-04-18 16:51:38 +08:00
parent 85f2539edb
commit 756d0eb315
22 changed files with 516 additions and 110 deletions

View File

@ -0,0 +1,94 @@
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.heibaiying</groupId>
<artifactId>storm-kafka-integration</artifactId>
<version>1.0</version>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>8</source>
<target>8</target>
</configuration>
</plugin>
<!--使用shade进行打包-->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<configuration>
<createDependencyReducedPom>true</createDependencyReducedPom>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.sf</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.dsa</exclude>
<exclude>META-INF/*.RSA</exclude>
<exclude>META-INF/*.rsa</exclude>
<exclude>META-INF/*.EC</exclude>
<exclude>META-INF/*.ec</exclude>
<exclude>META-INF/MSFTSIG.SF</exclude>
<exclude>META-INF/MSFTSIG.RSA</exclude>
</excludes>
</filter>
</filters>
<artifactSet>
<excludes>
<exclude>org.apache.storm:storm-core</exclude>
</excludes>
</artifactSet>
</configuration>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
<properties>
<storm.version>1.2.2</storm.version>
<kafka.version>2.2.0</kafka.version>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>${storm.version}</version>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-kafka-client</artifactId>
<version>${storm.version}</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>${kafka.version}</version>
</dependency>
</dependencies>
</project>

View File

@ -0,0 +1,40 @@
package com.heibaiying.kafka.read;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Tuple;
import java.util.Map;
/**
* 打印从Kafka中获取的数据
*/
public class LogConsoleBolt extends BaseRichBolt {
private OutputCollector collector;
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector=collector;
}
public void execute(Tuple input) {
try {
String value = input.getStringByField("value");
System.out.println("received from kafka : "+ value);
// 必须ack,否则会重复消费kafka中的消息
collector.ack(input);
}catch (Exception e){
e.printStackTrace();
collector.fail(input);
}
}
public void declareOutputFields(OutputFieldsDeclarer declarer) {
}
}

View File

@ -0,0 +1,61 @@
package com.heibaiying.kafka.read;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.AlreadyAliveException;
import org.apache.storm.generated.AuthorizationException;
import org.apache.storm.generated.InvalidTopologyException;
import org.apache.storm.kafka.spout.KafkaSpout;
import org.apache.storm.kafka.spout.KafkaSpoutConfig;
import org.apache.storm.kafka.spout.KafkaSpoutRetryExponentialBackoff;
import org.apache.storm.kafka.spout.KafkaSpoutRetryExponentialBackoff.TimeInterval;
import org.apache.storm.kafka.spout.KafkaSpoutRetryService;
import org.apache.storm.topology.TopologyBuilder;
/**
* 从Kafka中读取数据
*/
public class ReadingFromKafkaApp {
private static final String BOOTSTRAP_SERVERS = "hadoop001:9092";
private static final String TOPIC_NAME = "storm-topic";
public static void main(String[] args) {
final TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("kafka_spout", new KafkaSpout<>(getKafkaSpoutConfig(BOOTSTRAP_SERVERS, TOPIC_NAME)), 1);
builder.setBolt("bolt", new LogConsoleBolt()).shuffleGrouping("kafka_spout");
// 如果外部传参cluster则代表线上环境启动,否则代表本地启动
if (args.length > 0 && args[0].equals("cluster")) {
try {
StormSubmitter.submitTopology("ClusterReadingFromKafkaApp", new Config(), builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
e.printStackTrace();
}
} else {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("LocalReadingFromKafkaApp",
new Config(), builder.createTopology());
}
}
private static KafkaSpoutConfig<String, String> getKafkaSpoutConfig(String bootstrapServers, String topic) {
return KafkaSpoutConfig.builder(bootstrapServers, topic)
// 除了分组ID,以下配置都是可选的。分组ID必须指定,否则会抛出InvalidGroupIdException异常
.setProp(ConsumerConfig.GROUP_ID_CONFIG, "kafkaSpoutTestGroup")
// 定义重试策略
.setRetry(getRetryService())
// 定时提交偏移量的时间间隔,默认是15s
.setOffsetCommitPeriodMs(10_000)
.build();
}
// 定义重试策略
private static KafkaSpoutRetryService getRetryService() {
return new KafkaSpoutRetryExponentialBackoff(TimeInterval.microSeconds(500),
TimeInterval.milliSeconds(2), Integer.MAX_VALUE, TimeInterval.seconds(10));
}
}

View File

@ -0,0 +1,52 @@
package com.heibaiying.kafka.write;
import org.apache.storm.shade.org.apache.commons.lang.StringUtils;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values;
import org.apache.storm.utils.Utils;
import java.util.*;
/**
* 产生词频样本的数据源
*/
public class DataSourceSpout extends BaseRichSpout {
private List<String> list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive");
private SpoutOutputCollector spoutOutputCollector;
@Override
public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) {
this.spoutOutputCollector = spoutOutputCollector;
}
@Override
public void nextTuple() {
// 模拟产生数据
String lineData = productData();
spoutOutputCollector.emit(new Values("key",lineData));
Utils.sleep(1000);
}
@Override
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare( new Fields("key", "message"));
}
/**
* 模拟数据
*/
private String productData() {
Collections.shuffle(list);
Random random = new Random();
int endIndex = random.nextInt(list.size()) % (list.size()) + 1;
return StringUtils.join(list.toArray(), "\t", 0, endIndex);
}
}

View File

@ -0,0 +1,67 @@
package com.heibaiying.kafka.write;
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.AlreadyAliveException;
import org.apache.storm.generated.AuthorizationException;
import org.apache.storm.generated.InvalidTopologyException;
import org.apache.storm.kafka.bolt.KafkaBolt;
import org.apache.storm.kafka.bolt.mapper.FieldNameBasedTupleToKafkaMapper;
import org.apache.storm.kafka.bolt.selector.DefaultTopicSelector;
import org.apache.storm.topology.TopologyBuilder;
import java.util.Properties;
/**
* 写入数据到Kafka的特定主题中
*/
public class WritingToKafkaApp {
private static final String BOOTSTRAP_SERVERS = "hadoop001:9092";
private static final String TOPIC_NAME = "storm-topic";
public static void main(String[] args) {
TopologyBuilder builder = new TopologyBuilder();
// 定义Kafka生产者属性
Properties props = new Properties();
/*
* 指定broker的地址清单清单里不需要包含所有的broker地址生产者会从给定的broker里查找其他broker的信息。
* 不过建议至少要提供两个broker的信息作为容错。
*/
props.put("bootstrap.servers", BOOTSTRAP_SERVERS);
/*
* acks 参数指定了必须要有多少个分区副本收到消息,生产者才会认为消息写入是成功的。
* acks=0 : 生产者在成功写入消息之前不会等待任何来自服务器的响应。
* acks=1 : 只要集群的首领节点收到消息,生产者就会收到一个来自服务器成功响应。
* acks=all : 只有当所有参与复制的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应。
*/
props.put("acks", "1");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaBolt bolt = new KafkaBolt<String, String>()
.withProducerProperties(props)
.withTopicSelector(new DefaultTopicSelector(TOPIC_NAME))
.withTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper<>());
builder.setSpout("sourceSpout", new DataSourceSpout(), 1);
builder.setBolt("kafkaBolt", bolt, 1).shuffleGrouping("sourceSpout");
if (args.length > 0 && args[0].equals("cluster")) {
try {
StormSubmitter.submitTopology("ClusterWritingToKafkaApp", new Config(), builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
e.printStackTrace();
}
} else {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("LocalWritingToKafkaApp",
new Config(), builder.createTopology());
}
}
}