From 822bd0f5fb76d545c4c36add4fce8722c8e30b94 Mon Sep 17 00:00:00 2001
From: luoxiang <2806718453@qq.com>
Date: Mon, 27 May 2019 22:40:46 +0800
Subject: [PATCH] =?UTF-8?q?=E6=A0=BC=E5=BC=8F=E8=B0=83=E6=95=B4?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
README.md | 79 +--
...用.md => Azkaban_Flow_1.0_的使用.md} | 0
...用.md => Azkaban_Flow_2.0_的使用.md} | 0
.../{Hbase Java API.md => Hbase_Java_API.md} | 0
notes/{Hbase Shell.md => Hbase_Shell.md} | 0
...nix.md => Hbase的SQL中间层_Phoenix.md} | 504 +++++++++---------
...nux中大数据常用软件安装指南.md | 29 +-
...署.md => Azkaban_3.x_编译及部署.md} | 0
8 files changed, 303 insertions(+), 309 deletions(-)
rename notes/{Azkaban Flow 1.0 的使用.md => Azkaban_Flow_1.0_的使用.md} (100%)
rename notes/{Azkaban Flow 2.0 的使用.md => Azkaban_Flow_2.0_的使用.md} (100%)
rename notes/{Hbase Java API.md => Hbase_Java_API.md} (100%)
rename notes/{Hbase Shell.md => Hbase_Shell.md} (100%)
rename notes/{Hbase的SQL层——Phoenix.md => Hbase的SQL中间层_Phoenix.md} (97%)
rename notes/installation/{Azkaban 3.x 编译及部署.md => Azkaban_3.x_编译及部署.md} (100%)
diff --git a/README.md b/README.md
index 2b4edc2..25a7230 100644
--- a/README.md
+++ b/README.md
@@ -52,14 +52,14 @@
1. [分布式文件存储系统——HDFS](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hadoop-HDFS.md)
2. [分布式计算框架——MapReduce](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hadoop-MapReduce.md)
3. [集群资源管理器——YARN](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hadoop-YARN.md)
-4. [Hadoop单机伪集群环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/hadoop%E5%8D%95%E6%9C%BA%E7%89%88%E6%9C%AC%E7%8E%AF%E5%A2%83%E6%90%AD%E5%BB%BA.md)
+4. [Hadoop单机伪集群环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/hadoop单机版本环境搭建.md)
5. [HDFS常用Shell命令](https://github.com/heibaiying/BigData-Notes/blob/master/notes/HDFS常用Shell命令.md)
6. [HDFS Java API的使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/HDFS-Java-API.md)
## 二、Hive
1. [数据仓库Hive简介](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hive.md)
-2. [Linux环境下Hive的安装部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Linux%E7%8E%AF%E5%A2%83%E4%B8%8BHive%E7%9A%84%E5%AE%89%E8%A3%85%E9%83%A8%E7%BD%B2.md)
+2. [Linux环境下Hive的安装部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Linux环境下Hive的安装部署.md)
4. [Hive CLI和Beeline命令行的基本使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/HiveCLI和Beeline命令行的基本使用.md)
5. [Hive 核心概念讲解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hive核心概念讲解.md)
6. [Hive 常用DDL操作](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hive常用DDL操作.md)
@@ -94,53 +94,35 @@
3. [Spark Streaming 整合 Flume](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spark_Streaming整合Flume.md)
4. [Spark Streaming 整合 Kafka](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spark_Streaming整合Kafka.md)
-## 四、Flink
-
-TODO
-
-## 五、Storm
+## 四、Storm
1. [Storm和流处理简介](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm和流处理简介.md)
2. [Storm核心概念详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm核心概念详解.md)
-3. [Storm单机版本环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Storm%E5%8D%95%E6%9C%BA%E7%89%88%E6%9C%AC%E7%8E%AF%E5%A2%83%E6%90%AD%E5%BB%BA.md)
+3. [Storm单机版本环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Storm单机版本环境搭建.md)
4. [Storm编程模型详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm编程模型详解.md)
5. [Storm项目三种打包方式对比分析](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm三种打包方式对比分析.md)
6. [Storm集成Redis详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm集成Redis详解.md)
7. [Storm集成HDFS/HBase](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm集成HBase和HDFS.md)
8. [Storm集成Kafka](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Storm集成Kakfa.md)
-## 六、Flume
+## 五、Flink
-1. [Flume简介及基本使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Flume简介及基本使用.md)
-2. [Linux环境下Flume的安装部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Linux%E4%B8%8BFlume%E7%9A%84%E5%AE%89%E8%A3%85.md)
-3. [Flume整合Kafka](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Flume整合Kafka.md)
+TODO
-## 七、Sqoop
-
-1. [Sqoop简介与安装](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Sqoop简介与安装.md)
-
-2. [Sqoop的基本使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Sqoop基本使用.md)
-
-## 八、Azkaban
-
-1. [Azkaban简介](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Azkaban简介.md)
-2. [Azkaban3.x 编译及部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Azkaban%203.x%20%E7%BC%96%E8%AF%91%E5%8F%8A%E9%83%A8%E7%BD%B2.md)
-3. [Azkaban Flow 1.0 的使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Azkaban%20Flow%201.0%20%E7%9A%84%E4%BD%BF%E7%94%A8.md)
-4. [Azkaban Flow 2.0 的使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Azkaban%20Flow%202.0%20%E7%9A%84%E4%BD%BF%E7%94%A8.md)
-
-## 九、HBase
+## 六、HBase
1. [Hbase 简介](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase简介.md)
-2. [HBase系统架构及数据结构](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase%E7%B3%BB%E7%BB%9F%E6%9E%B6%E6%9E%84%E5%8F%8A%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84.md)
-3. [HBase基本环境搭建(Standalone /pseudo-distributed mode)](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Hbase%E5%9F%BA%E6%9C%AC%E7%8E%AF%E5%A2%83%E6%90%AD%E5%BB%BA.md)
-4. [HBase常用Shell命令](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase%20Shell.md)
-5. [HBase Java API](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase%20Java%20API.md)
+2. [HBase系统架构及数据结构](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase系统架构及数据结构.md)
+3. [HBase基本环境搭建(Standalone /pseudo-distributed mode)](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Hbase基本环境搭建.md)
+4. [HBase常用Shell命令](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase_Shell.md)
+5. [HBase Java API](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase_Java_API.md)
6. [Hbase 过滤器详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase过滤器详解.md)
7. [HBase 协处理器详解](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase协处理器详解.md)
-8. [HBase 容灾与备份](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase%E5%AE%B9%E7%81%BE%E4%B8%8E%E5%A4%87%E4%BB%BD.md)
-9. [HBase的SQL中间层——Phoenix](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase%E7%9A%84SQL%E5%B1%82%E2%80%94%E2%80%94Phoenix.md)
-10. [Spring/Spring Boot 整合 Mybatis + Phoenix](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spring%2BMybtais%2BPhoenix%E6%95%B4%E5%90%88.md)
-## 十、Kafka
+8. [HBase 容灾与备份](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase容灾与备份.md)
+9. [HBase的SQL中间层——Phoenix](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Hbase的SQL中间层_Phoenix.md)
+10. [Spring/Spring Boot 整合 Mybatis + Phoenix](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Spring+Mybtais+Phoenix整合.md)
+
+## 七、Kafka
1. [Kafka 核心概念介绍](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Kafka核心概念介绍.md)
2. [基于Zookeeper搭建Kafka高可用集群](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/基于Zookeeper搭建Kafka高可用集群.md)
@@ -149,7 +131,7 @@ TODO
5. Kafka 副本机制以及选举原理剖析
6. Kafka的数据可靠性
-## 十一、Zookeeper
+## 八、Zookeeper
1. [Zookeeper 简介及核心概念](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Zookeeper简介及核心概念.md)
2. [Zookeeper单机环境和集群环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Zookeeper单机环境和集群环境搭建.md)
@@ -157,6 +139,25 @@ TODO
4. [Zookeeper Java 客户端——Apache Curator](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Zookeeper_Java客户端Curator.md)
5. [Zookeeper ACL权限控制](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Zookeeper_ACL权限控制.md)
+## 九、Flume
+
+1. [Flume简介及基本使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Flume简介及基本使用.md)
+2. [Linux环境下Flume的安装部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Linux下Flume的安装.md)
+3. [Flume整合Kafka](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Flume整合Kafka.md)
+
+## 十、Sqoop
+
+1. [Sqoop简介与安装](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Sqoop简介与安装.md)
+
+2. [Sqoop的基本使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Sqoop基本使用.md)
+
+## 十一、Azkaban
+
+1. [Azkaban简介](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Azkaban简介.md)
+2. [Azkaban3.x 编译及部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Azkaban_3.x_编译及部署.md)
+3. [Azkaban Flow 1.0 的使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Azkaban_Flow_1.0_的使用.md)
+4. [Azkaban Flow 2.0 的使用](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Azkaban_Flow_2.0_的使用.md)
+
## 十二、Scala
1. [Scala简介及开发环境配置](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala简介及开发环境配置.md)
@@ -174,8 +175,10 @@ TODO
13. [隐式转换和隐式参数](https://github.com/heibaiying/BigData-Notes/blob/master/notes/Scala隐式转换和隐式参数.md)
-
-
## 十三、公共内容
-1. [大数据应用常用打包方式](https://github.com/heibaiying/BigData-Notes/blob/master/notes/大数据应用常用打包方式.md)
\ No newline at end of file
+1. [大数据应用常用打包方式](https://github.com/heibaiying/BigData-Notes/blob/master/notes/大数据应用常用打包方式.md)
+
+
+
+## 后记:bookmark_tabs:
\ No newline at end of file
diff --git a/notes/Azkaban Flow 1.0 的使用.md b/notes/Azkaban_Flow_1.0_的使用.md
similarity index 100%
rename from notes/Azkaban Flow 1.0 的使用.md
rename to notes/Azkaban_Flow_1.0_的使用.md
diff --git a/notes/Azkaban Flow 2.0 的使用.md b/notes/Azkaban_Flow_2.0_的使用.md
similarity index 100%
rename from notes/Azkaban Flow 2.0 的使用.md
rename to notes/Azkaban_Flow_2.0_的使用.md
diff --git a/notes/Hbase Java API.md b/notes/Hbase_Java_API.md
similarity index 100%
rename from notes/Hbase Java API.md
rename to notes/Hbase_Java_API.md
diff --git a/notes/Hbase Shell.md b/notes/Hbase_Shell.md
similarity index 100%
rename from notes/Hbase Shell.md
rename to notes/Hbase_Shell.md
diff --git a/notes/Hbase的SQL层——Phoenix.md b/notes/Hbase的SQL中间层_Phoenix.md
similarity index 97%
rename from notes/Hbase的SQL层——Phoenix.md
rename to notes/Hbase的SQL中间层_Phoenix.md
index 5afb005..83ca85a 100644
--- a/notes/Hbase的SQL层——Phoenix.md
+++ b/notes/Hbase的SQL中间层_Phoenix.md
@@ -1,252 +1,252 @@
-# Hbase的SQL中间层——Phoenix
-
-
-一、Phoenix简介
-二、Phoenix安装
- 2.1 下载并解压
- 2.2 拷贝Jar包
- 2.3 重启 Region Servers
- 2.4 启动Phoenix
- 2.5 启动结果
-三、Phoenix 简单使用
- 3.1 创建表
- 3.2 插入数据
- 3.3 修改数据
- 3.4 删除数据
- 3.5 查询数据
- 3.6 退出命令
- 3.7 扩展
-四、Phoenix Java API
- 4.1 引入Phoenix core JAR包
- 4.2 简单的Java API实例
-
-
-## 一、Phoenix简介
-
-Phoenix是HBase的开源SQL层。使得您可以使用标准JDBC API而不是常规HBase客户端API来操作Hbases上的数据。
-
-Phoenix完全使用Java编写,作为HBase内嵌的JDBC驱动。Phoenix查询引擎会将SQL查询转换为一个或多个HBase scan,并编排并行执行以生成标准的JDBC结果集,同时Phoenix还拥有二级索引等Hbase不具备的特性,这使得Phoenix具有极好的性能表现。
-
-
-
-
-
-## 二、Phoenix安装
-
-> 我们可以按照官方安装说明进行安装,官方说明如下:
->
-> - download and expand our installation tar
-> - copy the phoenix server jar that is compatible with your HBase installation into the lib directory of every region server
-> - restart the region servers
-> - add the phoenix client jar to the classpath of your HBase client
-> - download and setup SQuirrel as your SQL client so you can issue adhoc SQL against your HBase cluster
-
-### 2.1 下载并解压
-
-官方下载地址: http://phoenix.apache.org/download.html
-
-官方针对Apache版本和CDH版本的HBase均提供了安装包,按需下载即可。这里我们下载的版本为`4.14.0-cdh5.14.2`
-
-```shell
-# 下载
-wget http://mirror.bit.edu.cn/apache/phoenix/apache-phoenix-4.14.0-cdh5.14.2/bin/apache-phoenix-4.14.0-cdh5.14.2-bin.tar.gz
-# 解压
-tar tar apache-phoenix-4.14.0-cdh5.14.2-bin.tar.gz
-```
-
-### 2.2 拷贝Jar包
-
-按照官方文档的说明,需要将phoenix server jar 添加到所有 Region Servers上 Hbase 安装目录的 lib目录下。
-
-这里由于我搭建的是Hbase伪集群,所以只需要拷贝到当前机器的HBase的lib目录下。如果是真实集群,则使用scp命令分发到所有Region Servers机器上。
-
-```shell
-cp /usr/app/apache-phoenix-4.14.0-cdh5.14.2-bin/phoenix-4.14.0-cdh5.14.2-server.jar /usr/app/hbase-1.2.0-cdh5.15.2/lib
-```
-
-### 2.3 重启 Region Servers
-
-```shell
-# 停止Hbase
-stop-hbase.sh
-# 启动Hbase
-start-hbase.sh
-```
-
-### 2.4 启动Phoenix
-
-在Phoenix解压目录下的`bin`目录下执行如下命令,需要指定Zookeeper的地址:
-
-+ 如果HBase采用Standalone模式或者伪集群模式搭建,则采用内置的 Zookeeper,默认端口为2181;
-+ 如果是HBase是集群模式并采用自己搭建的Zookeeper集群,则按照自己的实际情况指定端口
-
-```shell
-# ./sqlline.py hadoop001:2181
-```
-
-### 2.5 启动结果
-
-启动后则进入了Phoenix交互式SQL命令行,可以使用`!table`或`!tables`查看当前所有表的信息
-
-
-
-
-
-## 三、Phoenix 简单使用
-
-### 3.1 创建表
-
-```sql
-CREATE TABLE IF NOT EXISTS us_population (
- state CHAR(2) NOT NULL,
- city VARCHAR NOT NULL,
- population BIGINT
- CONSTRAINT my_pk PRIMARY KEY (state, city));
-```
-
-
-
-新建的表会按照特定的规则转换为Hbase上的表,关于表的信息,可以通过Hbase Web UI 进行查看:
-
-
-
-### 3.2 插入数据
-
-Phoenix 中插入数据采用的是`UPSERT`而不是`INSERT`,因为Phoenix并没有更新操作,插入相同主键的数据就视为更新,所以`UPSERT`就相当于`UPDATE`+`INSERT`
-
-```shell
-UPSERT INTO us_population VALUES('NY','New York',8143197);
-UPSERT INTO us_population VALUES('CA','Los Angeles',3844829);
-UPSERT INTO us_population VALUES('IL','Chicago',2842518);
-UPSERT INTO us_population VALUES('TX','Houston',2016582);
-UPSERT INTO us_population VALUES('PA','Philadelphia',1463281);
-UPSERT INTO us_population VALUES('AZ','Phoenix',1461575);
-UPSERT INTO us_population VALUES('TX','San Antonio',1256509);
-UPSERT INTO us_population VALUES('CA','San Diego',1255540);
-UPSERT INTO us_population VALUES('TX','Dallas',1213825);
-UPSERT INTO us_population VALUES('CA','San Jose',912332);
-```
-
-### 3.3 修改数据
-
-```sql
--- 插入主键相同的数据就视为更新
-UPSERT INTO us_population VALUES('NY','New York',999999);
-```
-
-
-
-### 3.4 删除数据
-
-```sql
-DELETE FROM us_population WHERE city='Dallas';
-```
-
-
-
-### 3.5 查询数据
-
-```sql
-SELECT state as "州",count(city) as "市",sum(population) as "热度"
-FROM us_population
-GROUP BY state
-ORDER BY sum(population) DESC;
-```
-
-
-
-
-
-### 3.6 退出命令
-
-```sql
-!quit
-```
-
-
-
-### 3.7 扩展
-
-从上面的简单操作中我们可以看出,Phoenix 查询语句与我们正常使用的SQL是基本相同的,关于Phoenix 支持的语句、数据类型、函数、序列(和Oracle中序列类似)因为涵盖内容很广,可以参考其官方文档,官方上有详尽的配图说明的:
-
-+ 语法(Grammar):https://phoenix.apache.org/language/index.html
-
-+ 函数(Functions):http://phoenix.apache.org/language/functions.html
-
-+ 数据类型(Datatypes):http://phoenix.apache.org/language/datatypes.html
-
-+ 序列(Sequences):http://phoenix.apache.org/sequences.html
-
-+ 联结查询(Joins):http://phoenix.apache.org/joins.html
-
-
-
-## 四、Phoenix Java API
-
-因为Phoenix遵循JDBC规范,并提供了对应的数据库驱动PhoenixDriver,这使采用Java对其进行操作的时候,就如同对其他关系型数据库(例如 MySQL)操作一样。
-
-因为在实际的开发中我们通常都是采用第三方框架,比如mybatis,Hibernate,Spring Data 等,很少使用原生Java API操作关系型数据库,所以这里只给出一个简单的查询作为示例,并在下一篇文章中给出Spring boot + mybatis + Phoenix 的整合用例。
-
-### 4.1 引入Phoenix core JAR包
-
-如果是maven项目,直接在maven中央仓库找到对应的版本,导入依赖即可
-
-```xml
-
-
- org.apache.phoenix
- phoenix-core
- 4.14.0-cdh5.14.2
-
-```
-
-如果是普通项目,则可以从Phoenix 解压目录下找到对应的JAR包,然后手动引入
-
-
-
-### 4.2 简单的Java API实例
-
-```java
-import java.sql.Connection;
-import java.sql.DriverManager;
-import java.sql.PreparedStatement;
-import java.sql.ResultSet;
-
-
-public class PhoenixJavaApi {
-
- public static void main(String[] args) throws Exception {
-
- // 加载数据库驱动
- Class.forName("org.apache.phoenix.jdbc.PhoenixDriver");
-
- /*
- * 指定数据库地址,格式为 jdbc:phoenix:Zookeeper地址
- * 如果HBase采用Standalone模式或者伪集群模式搭建,则HBase默认使用内置的Zookeeper,默认端口为2181
- */
- Connection connection = DriverManager.getConnection("jdbc:phoenix:192.168.200.226:2181");
-
- PreparedStatement statement = connection.prepareStatement("SELECT * FROM us_population");
-
- ResultSet resultSet = statement.executeQuery();
-
- while (resultSet.next()) {
- System.out.println(resultSet.getString("city") + " "
- + resultSet.getInt("population"));
- }
-
- statement.close();
- connection.close();
- }
-}
-```
-
-结果如下:
-
-
-
-
-
-# 参考资料
-
-1. http://phoenix.apache.org/
+# Hbase的SQL中间层——Phoenix
+
+
+一、Phoenix简介
+二、Phoenix安装
+ 2.1 下载并解压
+ 2.2 拷贝Jar包
+ 2.3 重启 Region Servers
+ 2.4 启动Phoenix
+ 2.5 启动结果
+三、Phoenix 简单使用
+ 3.1 创建表
+ 3.2 插入数据
+ 3.3 修改数据
+ 3.4 删除数据
+ 3.5 查询数据
+ 3.6 退出命令
+ 3.7 扩展
+四、Phoenix Java API
+ 4.1 引入Phoenix core JAR包
+ 4.2 简单的Java API实例
+
+
+## 一、Phoenix简介
+
+Phoenix是HBase的开源SQL层。使得您可以使用标准JDBC API而不是常规HBase客户端API来操作Hbases上的数据。
+
+Phoenix完全使用Java编写,作为HBase内嵌的JDBC驱动。Phoenix查询引擎会将SQL查询转换为一个或多个HBase scan,并编排并行执行以生成标准的JDBC结果集,同时Phoenix还拥有二级索引等Hbase不具备的特性,这使得Phoenix具有极好的性能表现。
+
+
+
+
+
+## 二、Phoenix安装
+
+> 我们可以按照官方安装说明进行安装,官方说明如下:
+>
+> - download and expand our installation tar
+> - copy the phoenix server jar that is compatible with your HBase installation into the lib directory of every region server
+> - restart the region servers
+> - add the phoenix client jar to the classpath of your HBase client
+> - download and setup SQuirrel as your SQL client so you can issue adhoc SQL against your HBase cluster
+
+### 2.1 下载并解压
+
+官方下载地址: http://phoenix.apache.org/download.html
+
+官方针对Apache版本和CDH版本的HBase均提供了安装包,按需下载即可。这里我们下载的版本为`4.14.0-cdh5.14.2`
+
+```shell
+# 下载
+wget http://mirror.bit.edu.cn/apache/phoenix/apache-phoenix-4.14.0-cdh5.14.2/bin/apache-phoenix-4.14.0-cdh5.14.2-bin.tar.gz
+# 解压
+tar tar apache-phoenix-4.14.0-cdh5.14.2-bin.tar.gz
+```
+
+### 2.2 拷贝Jar包
+
+按照官方文档的说明,需要将phoenix server jar 添加到所有 Region Servers上 Hbase 安装目录的 lib目录下。
+
+这里由于我搭建的是Hbase伪集群,所以只需要拷贝到当前机器的HBase的lib目录下。如果是真实集群,则使用scp命令分发到所有Region Servers机器上。
+
+```shell
+cp /usr/app/apache-phoenix-4.14.0-cdh5.14.2-bin/phoenix-4.14.0-cdh5.14.2-server.jar /usr/app/hbase-1.2.0-cdh5.15.2/lib
+```
+
+### 2.3 重启 Region Servers
+
+```shell
+# 停止Hbase
+stop-hbase.sh
+# 启动Hbase
+start-hbase.sh
+```
+
+### 2.4 启动Phoenix
+
+在Phoenix解压目录下的`bin`目录下执行如下命令,需要指定Zookeeper的地址:
+
++ 如果HBase采用Standalone模式或者伪集群模式搭建,则采用内置的 Zookeeper,默认端口为2181;
++ 如果是HBase是集群模式并采用自己搭建的Zookeeper集群,则按照自己的实际情况指定端口
+
+```shell
+# ./sqlline.py hadoop001:2181
+```
+
+### 2.5 启动结果
+
+启动后则进入了Phoenix交互式SQL命令行,可以使用`!table`或`!tables`查看当前所有表的信息
+
+
+
+
+
+## 三、Phoenix 简单使用
+
+### 3.1 创建表
+
+```sql
+CREATE TABLE IF NOT EXISTS us_population (
+ state CHAR(2) NOT NULL,
+ city VARCHAR NOT NULL,
+ population BIGINT
+ CONSTRAINT my_pk PRIMARY KEY (state, city));
+```
+
+
+
+新建的表会按照特定的规则转换为Hbase上的表,关于表的信息,可以通过Hbase Web UI 进行查看:
+
+
+
+### 3.2 插入数据
+
+Phoenix 中插入数据采用的是`UPSERT`而不是`INSERT`,因为Phoenix并没有更新操作,插入相同主键的数据就视为更新,所以`UPSERT`就相当于`UPDATE`+`INSERT`
+
+```shell
+UPSERT INTO us_population VALUES('NY','New York',8143197);
+UPSERT INTO us_population VALUES('CA','Los Angeles',3844829);
+UPSERT INTO us_population VALUES('IL','Chicago',2842518);
+UPSERT INTO us_population VALUES('TX','Houston',2016582);
+UPSERT INTO us_population VALUES('PA','Philadelphia',1463281);
+UPSERT INTO us_population VALUES('AZ','Phoenix',1461575);
+UPSERT INTO us_population VALUES('TX','San Antonio',1256509);
+UPSERT INTO us_population VALUES('CA','San Diego',1255540);
+UPSERT INTO us_population VALUES('TX','Dallas',1213825);
+UPSERT INTO us_population VALUES('CA','San Jose',912332);
+```
+
+### 3.3 修改数据
+
+```sql
+-- 插入主键相同的数据就视为更新
+UPSERT INTO us_population VALUES('NY','New York',999999);
+```
+
+
+
+### 3.4 删除数据
+
+```sql
+DELETE FROM us_population WHERE city='Dallas';
+```
+
+
+
+### 3.5 查询数据
+
+```sql
+SELECT state as "州",count(city) as "市",sum(population) as "热度"
+FROM us_population
+GROUP BY state
+ORDER BY sum(population) DESC;
+```
+
+
+
+
+
+### 3.6 退出命令
+
+```sql
+!quit
+```
+
+
+
+### 3.7 扩展
+
+从上面的简单操作中我们可以看出,Phoenix 查询语句与我们正常使用的SQL是基本相同的,关于Phoenix 支持的语句、数据类型、函数、序列(和Oracle中序列类似)因为涵盖内容很广,可以参考其官方文档,官方上有详尽的配图说明的:
+
++ 语法(Grammar):https://phoenix.apache.org/language/index.html
+
++ 函数(Functions):http://phoenix.apache.org/language/functions.html
+
++ 数据类型(Datatypes):http://phoenix.apache.org/language/datatypes.html
+
++ 序列(Sequences):http://phoenix.apache.org/sequences.html
+
++ 联结查询(Joins):http://phoenix.apache.org/joins.html
+
+
+
+## 四、Phoenix Java API
+
+因为Phoenix遵循JDBC规范,并提供了对应的数据库驱动PhoenixDriver,这使采用Java对其进行操作的时候,就如同对其他关系型数据库(例如 MySQL)操作一样。
+
+因为在实际的开发中我们通常都是采用第三方框架,比如mybatis,Hibernate,Spring Data 等,很少使用原生Java API操作关系型数据库,所以这里只给出一个简单的查询作为示例,并在下一篇文章中给出Spring boot + mybatis + Phoenix 的整合用例。
+
+### 4.1 引入Phoenix core JAR包
+
+如果是maven项目,直接在maven中央仓库找到对应的版本,导入依赖即可
+
+```xml
+
+
+ org.apache.phoenix
+ phoenix-core
+ 4.14.0-cdh5.14.2
+
+```
+
+如果是普通项目,则可以从Phoenix 解压目录下找到对应的JAR包,然后手动引入
+
+
+
+### 4.2 简单的Java API实例
+
+```java
+import java.sql.Connection;
+import java.sql.DriverManager;
+import java.sql.PreparedStatement;
+import java.sql.ResultSet;
+
+
+public class PhoenixJavaApi {
+
+ public static void main(String[] args) throws Exception {
+
+ // 加载数据库驱动
+ Class.forName("org.apache.phoenix.jdbc.PhoenixDriver");
+
+ /*
+ * 指定数据库地址,格式为 jdbc:phoenix:Zookeeper地址
+ * 如果HBase采用Standalone模式或者伪集群模式搭建,则HBase默认使用内置的Zookeeper,默认端口为2181
+ */
+ Connection connection = DriverManager.getConnection("jdbc:phoenix:192.168.200.226:2181");
+
+ PreparedStatement statement = connection.prepareStatement("SELECT * FROM us_population");
+
+ ResultSet resultSet = statement.executeQuery();
+
+ while (resultSet.next()) {
+ System.out.println(resultSet.getString("city") + " "
+ + resultSet.getInt("population"));
+ }
+
+ statement.close();
+ connection.close();
+ }
+}
+```
+
+结果如下:
+
+
+
+
+
+# 参考资料
+
+1. http://phoenix.apache.org/
diff --git a/notes/Linux中大数据常用软件安装指南.md b/notes/Linux中大数据常用软件安装指南.md
index c9718c4..c50af6c 100644
--- a/notes/Linux中大数据常用软件安装指南.md
+++ b/notes/Linux中大数据常用软件安装指南.md
@@ -5,56 +5,47 @@
1. [Linux环境下JDK安装](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Linux下JDK安装.md)
2. [Linux环境下Python安装](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Linux下Python安装.md)
-
-
### 二、Hadoop
-1. [Hadoop单机版本环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/hadoop%E5%8D%95%E6%9C%BA%E7%89%88%E6%9C%AC%E7%8E%AF%E5%A2%83%E6%90%AD%E5%BB%BA.md)
-
+1. [Hadoop单机版本环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/hadoop单机版本环境搭建.md)
+2. Hadoop集群环境搭建
+3. 基于Zookeeper搭建Hadoop的HA集群
### 三、Spark
1. [Spark单机版本环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Spark单机版本环境搭建.md)
-
+2. Spark集群环境搭建
### 四、Storm
1. [Storm单机版本环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Storm单机版本环境搭建.md)
-
+2. Storm集群环境搭建
### 五、Hbase
-1. [Hbase基本环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Hbase%E5%9F%BA%E6%9C%AC%E7%8E%AF%E5%A2%83%E6%90%AD%E5%BB%BA.md)
-
+1. [Hbase基本环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Hbase基本环境搭建.md)
+2. Hbase集群环境搭建
### 六、Flume
-1. [Linux环境下Flume的安装部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Linux%E4%B8%8BFlume%E7%9A%84%E5%AE%89%E8%A3%85.md)
-
-
+1. [Linux环境下Flume的安装部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Linux下Flume的安装.md)
### 七、Azkaban
-1. [Azkaban3.x编译及部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Azkaban%203.x%20%E7%BC%96%E8%AF%91%E5%8F%8A%E9%83%A8%E7%BD%B2.md)
-
-
+1. [Azkaban3.x编译及部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Azkaban_3.x_编译及部署.md)
### 八、Hive
-1. [Linux环境下Hive的安装部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Linux%E7%8E%AF%E5%A2%83%E4%B8%8BHive%E7%9A%84%E5%AE%89%E8%A3%85%E9%83%A8%E7%BD%B2.md)
-
-
+1. [Linux环境下Hive的安装部署](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Linux环境下Hive的安装部署.md)
### 九、Zookeeper
1. [Zookeeper单机环境和集群环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Zookeeper单机环境和集群环境搭建.md)
-
-
### 十、Kafka
1. [基于Zookeeper搭建Kafka高可用集群](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/基于Zookeeper搭建Kafka高可用集群.md)
\ No newline at end of file
diff --git a/notes/installation/Azkaban 3.x 编译及部署.md b/notes/installation/Azkaban_3.x_编译及部署.md
similarity index 100%
rename from notes/installation/Azkaban 3.x 编译及部署.md
rename to notes/installation/Azkaban_3.x_编译及部署.md