mapreduce词频统计案例
| @@ -4,13 +4,12 @@ | |||||||
| <a href="#一MapReduce-概述">一、MapReduce 概述</a><br/> | <a href="#一MapReduce-概述">一、MapReduce 概述</a><br/> | ||||||
| <a href="#二MapReduce-编程模型简述">二、MapReduce 编程模型简述</a><br/> | <a href="#二MapReduce-编程模型简述">二、MapReduce 编程模型简述</a><br/> | ||||||
| <a href="#三MapReduce-编程模型详述">三、MapReduce 编程模型详述</a><br/> | <a href="#三MapReduce-编程模型详述">三、MapReduce 编程模型详述</a><br/> | ||||||
|     <a href="#31-InputFormat-&-RecordReaders">3.1 InputFormat & RecordReaders </a><br/> |  | ||||||
|     <a href="#32-combiner">3.2 combiner</a><br/> |  | ||||||
|     <a href="#33-partitioner">3.3 partitioner</a><br/> |  | ||||||
|     <a href="#34-sort-&-combiner">3.4 sort & combiner</a><br/> |  | ||||||
| <a href="#四MapReduce-词频统计案例">四、MapReduce 词频统计案例</a><br/> | <a href="#四MapReduce-词频统计案例">四、MapReduce 词频统计案例</a><br/> | ||||||
|  | <a href="#五词频统计案例进阶">五、词频统计案例进阶</a><br/> | ||||||
| </nav> | </nav> | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| ## 一、MapReduce 概述 | ## 一、MapReduce 概述 | ||||||
|  |  | ||||||
| Hadoop MapReduce是一个分布式计算框架,用于编写应用程序,以可靠,容错的方式在大型集群上并行处理大量数据(多为TB级别数据集)。 | Hadoop MapReduce是一个分布式计算框架,用于编写应用程序,以可靠,容错的方式在大型集群上并行处理大量数据(多为TB级别数据集)。 | ||||||
| @@ -75,11 +74,23 @@ public abstract class InputFormat<K, V> { | |||||||
|  |  | ||||||
| ### 3.2 combiner | ### 3.2 combiner | ||||||
|  |  | ||||||
| combiner是map运算后的可选操作,其实际上是一个本地化的reduce操作,它主要是在map计算出中间文件后做一个简单的合并重复key值的操作。例如我们对文件里的单词频率做统计,map计算时候如果碰到一个hadoop的单词就会记录为1,但是这篇文章里hadoop可能会出现n多次,那么map输出文件冗余就会很多,因此在reduce计算前对相同的key做一个合并操作,那么文件会变小。这样就提高了宽带的传输效率,因为hadoop计算的宽带资源往往是计算的瓶颈也是最为宝贵的资源。 | combiner是map运算后的可选操作,其实际上是一个本地化的reduce操作,它主要是在map计算出中间文件后做一个简单的合并重复key值的操作。 | ||||||
|  |  | ||||||
|  | 例如我们对文件里的单词频率做统计,map计算时候如果碰到一个hadoop的单词就会记录为1,但是这篇文章里hadoop可能会出现n多次,那么map输出文件冗余就会很多,因此在reduce计算前对相同的key做一个合并操作,那么文件会变小。这样就提高了宽带的传输效率,因为hadoop计算的宽带资源往往是计算的瓶颈也是最为宝贵的资源。 | ||||||
|  |  | ||||||
| 但并非所有场景都适合使用combiner,使用它的原则是combiner的输入不会影响到reduce计算的最终输入,例如:如果计算只是求总数,最大值,最小值可以使用combiner,但是做平均值计算使用combiner的话,最终的reduce计算结果就会出错。 | 但并非所有场景都适合使用combiner,使用它的原则是combiner的输入不会影响到reduce计算的最终输入,例如:如果计算只是求总数,最大值,最小值可以使用combiner,但是做平均值计算使用combiner的话,最终的reduce计算结果就会出错。 | ||||||
|  |  | ||||||
| <div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/mapreduce-combiner.png"/> </div> | 不使用combiner的情况: | ||||||
|  |  | ||||||
|  | <div align="center"> <img  src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/mapreduce-without-combiners.png"/> </div> | ||||||
|  |  | ||||||
|  | 使用combiner的情况: | ||||||
|  |  | ||||||
|  | <div align="center"> <img  src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/mapreduce-with-combiners.png"/> </div> | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | 可以看到使用combiner的时候,需要传输到reducer中的数据由12keys,降低到10keys。降低的幅度取决于你keys的重复率,后文词频统计案例可以直观演示用combiner降低数百倍的传输量。 | ||||||
|  |  | ||||||
| ### 3.3 partitioner | ### 3.3 partitioner | ||||||
|  |  | ||||||
| @@ -99,6 +110,364 @@ Merge是怎样的?如“aaa”从某个map task读取过来时值是5,从另 | |||||||
|  |  | ||||||
| ## 四、MapReduce 词频统计案例 | ## 四、MapReduce 词频统计案例 | ||||||
|  |  | ||||||
|  | ### 4.1 项目简介 | ||||||
|  |  | ||||||
|  | 这里给出一个经典的案例:词频统计。统计如下样本数据中每个单词出现的次数。 | ||||||
|  |  | ||||||
|  | ```properties | ||||||
|  | Spark	HBase | ||||||
|  | Hive	Flink	Storm	Hadoop	HBase	Spark | ||||||
|  | Flink | ||||||
|  | HBase	Storm | ||||||
|  | HBase	Hadoop	Hive	Flink | ||||||
|  | HBase	Flink	Hive	Storm | ||||||
|  | Hive	Flink	Hadoop | ||||||
|  | HBase	Hive | ||||||
|  | Hadoop	Spark	HBase	Storm | ||||||
|  | HBase	Hadoop	Hive	Flink | ||||||
|  | HBase	Flink	Hive	Storm | ||||||
|  | Hive	Flink	Hadoop | ||||||
|  | HBase	Hive | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | 为方便大家开发,我在项目源码中放置了一个工具类`WordCountDataUtils`,用于产生词频统计样本文件: | ||||||
|  |  | ||||||
|  | + 支持产生样本文件到本地,适用于本地测试; | ||||||
|  | + 支持产生样本文件并直接输出到HDFS,适用于提交到服务器测试; | ||||||
|  |  | ||||||
|  | > 本篇文章所有源码下载地址:[hadoop-word-count](https://github.com/heibaiying/BigData-Notes/tree/master/code/Hadoop/hadoop-word-count) | ||||||
|  |  | ||||||
|  | ```java | ||||||
|  | /** | ||||||
|  |  * 产生词频统计模拟数据 | ||||||
|  |  */ | ||||||
|  | public class WordCountDataUtils { | ||||||
|  |  | ||||||
|  |     public static final List<String> WORD_LIST = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive"); | ||||||
|  |  | ||||||
|  |  | ||||||
|  |     /** | ||||||
|  |      * 模拟产生词频数据 | ||||||
|  |      * | ||||||
|  |      * @return 词频数据 | ||||||
|  |      */ | ||||||
|  |     private static String generateData() { | ||||||
|  |         StringBuilder builder = new StringBuilder(); | ||||||
|  |         for (int i = 0; i < 1000; i++) { | ||||||
|  |             Collections.shuffle(WORD_LIST); | ||||||
|  |             Random random = new Random(); | ||||||
|  |             int endIndex = random.nextInt(WORD_LIST.size()) % (WORD_LIST.size()) + 1; | ||||||
|  |             String line = StringUtils.join(WORD_LIST.toArray(), "\t", 0, endIndex); | ||||||
|  |             builder.append(line).append("\n"); | ||||||
|  |         } | ||||||
|  |         return builder.toString(); | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |  | ||||||
|  |     /** | ||||||
|  |      * 模拟产生词频数据并输出到本地 | ||||||
|  |      * | ||||||
|  |      * @param outputPath 输出文件路径 | ||||||
|  |      */ | ||||||
|  |     private static void generateDataToLocal(String outputPath) { | ||||||
|  |         try { | ||||||
|  |             java.nio.file.Path path = Paths.get(outputPath); | ||||||
|  |             if (Files.exists(path)) { | ||||||
|  |                 Files.delete(path); | ||||||
|  |             } | ||||||
|  |             Files.write(path, generateData().getBytes(), StandardOpenOption.CREATE); | ||||||
|  |         } catch (IOException e) { | ||||||
|  |             e.printStackTrace(); | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     /** | ||||||
|  |      * 模拟产生词频数据并输出到HDFS | ||||||
|  |      * | ||||||
|  |      * @param hdfsUrl          HDFS地址 | ||||||
|  |      * @param user             hadoop用户名 | ||||||
|  |      * @param outputPathString 存储到HDFS上的路径 | ||||||
|  |      */ | ||||||
|  |     private static void generateDataToHDFS(String hdfsUrl, String user, String outputPathString) { | ||||||
|  |         FileSystem fileSystem = null; | ||||||
|  |         try { | ||||||
|  |             fileSystem = FileSystem.get(new URI(hdfsUrl), new Configuration(), user); | ||||||
|  |             Path outputPath = new Path(outputPathString); | ||||||
|  |             if (fileSystem.exists(outputPath)) { | ||||||
|  |                 fileSystem.delete(outputPath, true); | ||||||
|  |             } | ||||||
|  |             FSDataOutputStream out = fileSystem.create(outputPath); | ||||||
|  |             out.write(generateData().getBytes()); | ||||||
|  |             out.flush(); | ||||||
|  |             out.close(); | ||||||
|  |             fileSystem.close(); | ||||||
|  |         } catch (Exception e) { | ||||||
|  |             e.printStackTrace(); | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     public static void main(String[] args) { | ||||||
|  |        //generateDataToLocal("input.txt"); | ||||||
|  |        generateDataToHDFS("hdfs://192.168.0.107:8020", "root", "/wordcount/input.txt"); | ||||||
|  |     } | ||||||
|  | } | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | ### 4.2 WordCountMapper | ||||||
|  |  | ||||||
|  | **Mapper代码实现**: | ||||||
|  |  | ||||||
|  | ```java | ||||||
|  | /** | ||||||
|  |  * 将每行数据按照指定分隔符进行拆分 | ||||||
|  |  */ | ||||||
|  | public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> { | ||||||
|  |  | ||||||
|  |     @Override | ||||||
|  |     protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { | ||||||
|  |         String[] words = value.toString().split("\t"); | ||||||
|  |         for (String word : words) { | ||||||
|  |             context.write(new Text(word), new IntWritable(1)); | ||||||
|  |         } | ||||||
|  |     } | ||||||
|  |  | ||||||
|  | } | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | **代码说明**: | ||||||
|  |  | ||||||
|  | Splitting操作已由由Hadoop程序帮我们完成的,WordCountMapper对于下图的Mapping操作,这里WordCountMapper继承自Mapper类,这是一个泛型类,定义如下: | ||||||
|  |  | ||||||
|  | ```java | ||||||
|  | public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> { | ||||||
|  |    ...... | ||||||
|  | } | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | + KEYIN : mapping输入的key的数据类型,即每行的偏移量(每行第一个字符在文本中的位置),Long类型,对应Hadoop中的LongWritable类型; | ||||||
|  | + VALUEIN : mappin输入的value的数据类型,即每行数据;String类型,对应Hadoop中Text类型; | ||||||
|  | + KEYOUT :mapping输出的key的数据类型,即每个单词;String类型,对应Hadoop中Text类型; | ||||||
|  | + VALUEOUT:mapping输出的value的数据类型,即每个单词出现的次数;这里用int类型,对应Hadoop中IntWritable类型; | ||||||
|  |  | ||||||
|  | 在MapReduce中必须使用Hadoop定义的类型,因为Hadoop预定义的类型都是可序列化,可比较的,所有类型均实现了`WritableComparable`接口。 | ||||||
|  |  | ||||||
|  | <div align="center"> <img  src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hadoop-code-mapping.png"/> </div> | ||||||
|  |  | ||||||
|  | ### 4.3 WordCountReducer | ||||||
|  |  | ||||||
|  | **Reducer代码实现**: | ||||||
|  |  | ||||||
|  | ```java | ||||||
|  | /** | ||||||
|  |  * 进行词频统计 | ||||||
|  |  */ | ||||||
|  | public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> { | ||||||
|  |  | ||||||
|  |     @Override | ||||||
|  |     protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { | ||||||
|  |         int count = 0; | ||||||
|  |         for (IntWritable value : values) { | ||||||
|  |             count += value.get(); | ||||||
|  |         } | ||||||
|  |         context.write(key, new IntWritable(count)); | ||||||
|  |     } | ||||||
|  | } | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | **代码说明**: | ||||||
|  |  | ||||||
|  | 这里的key显然就是每个单词,这里的values是一个可迭代的数据类型,因为shuffling输出的数据实际上是下图中所示的这样的,即`key,(1,1,1,1,1,1,1,.....)`。values是可迭代的。 | ||||||
|  |  | ||||||
|  | <div align="center"> <img  src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hadoop-code-reducer.png"/> </div> | ||||||
|  |  | ||||||
|  | ### 4.4 WordCountApp | ||||||
|  |  | ||||||
|  | 组装MapReduce作业,并提交到服务器运行,代码如下: | ||||||
|  |  | ||||||
|  | ```java | ||||||
|  |  | ||||||
|  | /** | ||||||
|  |  * 组装作业 并提交到集群运行 | ||||||
|  |  */ | ||||||
|  | public class WordCountApp { | ||||||
|  |  | ||||||
|  |  | ||||||
|  |     // 这里为了直观显示参数 使用了硬编码,实际开发中可以通过外部传参 | ||||||
|  |     private static final String HDFS_URL = "hdfs://192.168.0.107:8020"; | ||||||
|  |     private static final String HADOOP_USER_NAME = "root"; | ||||||
|  |  | ||||||
|  |     public static void main(String[] args) throws Exception { | ||||||
|  |  | ||||||
|  |         //  文件输入路径和输出路径由外部传参指定 | ||||||
|  |         if (args.length < 2) { | ||||||
|  |             System.out.println("Input and output paths are necessary!"); | ||||||
|  |             return; | ||||||
|  |         } | ||||||
|  |  | ||||||
|  |         // 需要指明hadoop用户名,否则在HDFS上创建目录时可能会抛出权限不足的异常 | ||||||
|  |         System.setProperty("HADOOP_USER_NAME", HADOOP_USER_NAME); | ||||||
|  |  | ||||||
|  |         Configuration configuration = new Configuration(); | ||||||
|  |         // 指明HDFS的地址 | ||||||
|  |         configuration.set("fs.defaultFS", HDFS_URL); | ||||||
|  |  | ||||||
|  |         // 创建一个Job | ||||||
|  |         Job job = Job.getInstance(configuration); | ||||||
|  |  | ||||||
|  |         // 设置运行的主类 | ||||||
|  |         job.setJarByClass(WordCountApp.class); | ||||||
|  |  | ||||||
|  |         // 设置Mapper和Reducer | ||||||
|  |         job.setMapperClass(WordCountMapper.class); | ||||||
|  |         job.setReducerClass(WordCountReducer.class); | ||||||
|  |  | ||||||
|  |         // 设置Mapper输出key和value的类型 | ||||||
|  |         job.setMapOutputKeyClass(Text.class); | ||||||
|  |         job.setMapOutputValueClass(IntWritable.class); | ||||||
|  |  | ||||||
|  |         // 设置Reducer输出key和value的类型 | ||||||
|  |         job.setOutputKeyClass(Text.class); | ||||||
|  |         job.setOutputValueClass(IntWritable.class); | ||||||
|  |  | ||||||
|  |         // 如果输出目录已经存在,则必须先删除,否则重复运行程序时会抛出异常 | ||||||
|  |         FileSystem fileSystem = FileSystem.get(new URI(HDFS_URL), configuration, HADOOP_USER_NAME); | ||||||
|  |         Path outputPath = new Path(args[1]); | ||||||
|  |         if (fileSystem.exists(outputPath)) { | ||||||
|  |             fileSystem.delete(outputPath, true); | ||||||
|  |         } | ||||||
|  |  | ||||||
|  |         // 设置作业输入文件和输出文件的路径 | ||||||
|  |         FileInputFormat.setInputPaths(job, new Path(args[0])); | ||||||
|  |         FileOutputFormat.setOutputPath(job, outputPath); | ||||||
|  |  | ||||||
|  |         // 将作业提交到群集并等待它完成,参数设置为true代表打印显示对应的进度 | ||||||
|  |         boolean result = job.waitForCompletion(true); | ||||||
|  |  | ||||||
|  |         // 关闭之前创建的fileSystem | ||||||
|  |         fileSystem.close(); | ||||||
|  |  | ||||||
|  |         // 根据作业结果,终止当前运行的Java虚拟机,退出程序 | ||||||
|  |         System.exit(result ? 0 : -1); | ||||||
|  |  | ||||||
|  |     } | ||||||
|  | } | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | 这里说明一下:`setMapOutputKeyClass`和`setOutputValueClass`控制reducer函数的输出类型。map函数的输出类型默认情况下和reducer函数式相同的,如果不同,则必须通过`setMapOutputKeyClass`和`setMapOutputValueClass`进行设置。 | ||||||
|  |  | ||||||
|  | ### 4.5 提交到服务器运行 | ||||||
|  |  | ||||||
|  | 在实际开发中,可以在本机配置hadoop开发环境,直接运行`main`方法既可。这里主要介绍一下打包提交到服务器运行: | ||||||
|  |  | ||||||
|  | 由于本项目没有使用除Hadoop外的第三方依赖,直接打包即可: | ||||||
|  |  | ||||||
|  | ```shell | ||||||
|  | # mvn clean package | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | 使用以下命令运行作业: | ||||||
|  |  | ||||||
|  | ```shell | ||||||
|  | hadoop jar /usr/appjar/hadoop-word-count-1.0.jar \ | ||||||
|  | com.heibaiying.WordCountApp \ | ||||||
|  | /wordcount/input.txt /wordcount/output/WordCountApp | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | 作业完成后查看HDFS上生成目录: | ||||||
|  |  | ||||||
|  | ```shell | ||||||
|  | # 查看目录 | ||||||
|  | hadoop fs -ls /wordcount/output/WordCountApp | ||||||
|  |  | ||||||
|  | # 查看统计结果 | ||||||
|  | hadoop fs -cat /wordcount/output/WordCountApp/part-r-00000 | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | <div align="center"> <img  src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hadoop-wordcountapp.png"/> </div> | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | ## 五、词频统计案例进阶 | ||||||
|  |  | ||||||
|  | ### 5.1 combiner | ||||||
|  |  | ||||||
|  | #### 1. combiner的代码实现 | ||||||
|  |  | ||||||
|  | combiner的代码实现比较简单,只要在组装作业时,添加下面一行代码即可 | ||||||
|  |  | ||||||
|  | ```java | ||||||
|  | // 设置Combiner | ||||||
|  | job.setCombinerClass(WordCountReducer.class); | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | #### 2. 测试结果 | ||||||
|  |  | ||||||
|  | 加入combiner后统计结果是不会有变化的,但是我们可以从打印的日志看出combiner的效果: | ||||||
|  |  | ||||||
|  | 没有加入combiner的打印日志: | ||||||
|  |  | ||||||
|  | <div align="center"> <img  src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hadoop-no-combiner.png"/> </div> | ||||||
|  |  | ||||||
|  | 加入combiner后的打印日志如下。 | ||||||
|  |  | ||||||
|  | <div align="center"> <img  src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hadoop-combiner.png"/> </div> | ||||||
|  |  | ||||||
|  | 这里我们只有一个输入文件并且小于128M,所以只有一个Map进行处理,可以看到经过combiner后,records由3519降低为6(样本中单词种类就只有6个),这一点从图中日志的`reduce input records`参数也可以看出来。在这个用例中combiner的效果就非常明显。 | ||||||
|  |  | ||||||
|  | ### 5.2 Partitioner | ||||||
|  |  | ||||||
|  | #### 1.  默认Partitioner规则 | ||||||
|  |  | ||||||
|  | 这里假设有个需求:将不同单词的统计结果输出到不同文件。这种需求实际上比较常见,比如统计产品的销量时,需要将结果按照产品分类输出。 | ||||||
|  |  | ||||||
|  | 要实现这个功能,就需要用到自定义Partitioner,这里我们先说一下默认的分区规则:在构建job时候,如果不指定,默认的使用的是`HashPartitioner`,其实现如下: | ||||||
|  |  | ||||||
|  | ```java | ||||||
|  | public class HashPartitioner<K, V> extends Partitioner<K, V> { | ||||||
|  |  | ||||||
|  |   public int getPartition(K key, V value, | ||||||
|  |                           int numReduceTasks) { | ||||||
|  |     return (key.hashCode() & Integer.MAX_VALUE) % numReduceTasks; | ||||||
|  |   } | ||||||
|  |  | ||||||
|  | } | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | 对key进行哈希散列并对`numReduceTasks`取余,这里由于`numReduceTasks`默认值为1,所以我们之前的统计结果都输出到同一个文件中。 | ||||||
|  |  | ||||||
|  | #### 2. 自定义Partitioner | ||||||
|  |  | ||||||
|  | 这里我们继承`Partitioner`自定义分区规则,这里按照单词进行分区: | ||||||
|  |  | ||||||
|  | ```java | ||||||
|  | /** | ||||||
|  |  * 自定义partitioner,按照单词分区 | ||||||
|  |  */ | ||||||
|  | public class CustomPartitioner extends Partitioner<Text, IntWritable> { | ||||||
|  |  | ||||||
|  |     public int getPartition(Text text, IntWritable intWritable, int numPartitions) { | ||||||
|  |         return WordCountDataUtils.WORD_LIST.indexOf(text.toString()); | ||||||
|  |     } | ||||||
|  | } | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | 并在构建job时候指定使用我们自己的分区规则,并设置reduce的个数: | ||||||
|  |  | ||||||
|  | ```java | ||||||
|  | // 设置自定义分区规则 | ||||||
|  | job.setPartitionerClass(CustomPartitioner.class); | ||||||
|  | // 设置reduce个数 | ||||||
|  | job.setNumReduceTasks(WordCountDataUtils.WORD_LIST.size()); | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | #### 3. 测试结果 | ||||||
|  |  | ||||||
|  | 测试结果如下,分别生成6个文件,每个文件中为对应单词的统计结果。 | ||||||
|  |  | ||||||
|  | <div align="center"> <img  src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/hadoop-wordcountcombinerpartition.png"/> </div> | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| @@ -107,6 +476,7 @@ Merge是怎样的?如“aaa”从某个map task读取过来时值是5,从另 | |||||||
|  |  | ||||||
| 1. [分布式计算框架MapReduce](https://zhuanlan.zhihu.com/p/28682581) | 1. [分布式计算框架MapReduce](https://zhuanlan.zhihu.com/p/28682581) | ||||||
| 2. [Apache Hadoop 2.9.2 > MapReduce Tutorial](http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html) | 2. [Apache Hadoop 2.9.2 > MapReduce Tutorial](http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html) | ||||||
|  | 3. [MapReduce - Combiners]( https://www.tutorialscampus.com/tutorials/map-reduce/combiners.htm) | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|   | |||||||
							
								
								
									
										116
									
								
								notes/installation/虚拟机静态IP及多IP配置.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						| @@ -0,0 +1,116 @@ | |||||||
|  | # 虚拟机静态IP及多IP配置 | ||||||
|  |  | ||||||
|  | >  虚拟机环境:centos 7.6 | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | <nav> | ||||||
|  | <a href="#一虚拟机静态IP配置">一、虚拟机静态IP配置</a><br/> | ||||||
|  | <a href="#二虚拟机多个静态IP配置">二、虚拟机多个静态IP配置</a><br/> | ||||||
|  | </nav> | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | ## 一、虚拟机静态IP配置 | ||||||
|  |  | ||||||
|  | ### 1. 查看当前网卡名称 | ||||||
|  |  | ||||||
|  | 	使用`ifconfig`,本机网卡名称为`enp0s3` | ||||||
|  |  | ||||||
|  | <div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/en0s3.png"/> </div> | ||||||
|  |  | ||||||
|  | ### 2. 编辑网络配置文件 | ||||||
|  |  | ||||||
|  | ```shell | ||||||
|  | # vim /etc/sysconfig/network-scripts/ifcfg-enp0s3 | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | 添加如下网络配置: | ||||||
|  |  | ||||||
|  | + IPADDR需要和宿主机同一个网段; | ||||||
|  | + GATEWAY保持和宿主机一致; | ||||||
|  |  | ||||||
|  | ```properties | ||||||
|  | BOOTPROTO=static | ||||||
|  | IPADDR=192.168.0.107 | ||||||
|  | NETMASK=255.255.255.0 | ||||||
|  | GATEWAY=192.168.0.1 | ||||||
|  | DNS1=192.168.0.1 | ||||||
|  | ONBOOT=yes | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | 我的主机配置: | ||||||
|  |  | ||||||
|  | <div align="center"> <img  src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/ipconfig.png"/> </div> | ||||||
|  |  | ||||||
|  | 修改后完整配置如下: | ||||||
|  |  | ||||||
|  | ```properties | ||||||
|  | <div align="center"> <img  src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/virtualbox-multi-network.png"/> </div>TYPE=Ethernet | ||||||
|  | PROXY_METHOD=none | ||||||
|  | BROWSER_ONLY=no | ||||||
|  | BOOTPROTO=static | ||||||
|  | IPADDR=192.168.0.107 | ||||||
|  | NETMASK=255.255.255.0 | ||||||
|  | GATEWAY=192.168.0.1 | ||||||
|  | BROADCAST=192.168.0.255 | ||||||
|  | DNS1=192.168.0.1 | ||||||
|  | DEFROUTE=yes | ||||||
|  | IPV4_FAILURE_FATAL=no | ||||||
|  | IPV6INIT=yes | ||||||
|  | IPV6_AUTOCONF=yes | ||||||
|  | IPV6_DEFROUTE=yes | ||||||
|  | IPV6_FAILURE_FATAL=no | ||||||
|  | IPV6_ADDR_GEN_MODE=stable-privacy | ||||||
|  | NAME=enp0s3 | ||||||
|  | UUID=03d45df1-8514-4774-9b47-fddd6b9d9fca | ||||||
|  | DEVICE=enp0s3 | ||||||
|  | ONBOOT=yes | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | ### 3. 重启网络服务 | ||||||
|  |  | ||||||
|  | ```shell | ||||||
|  | #  systemctl restart network | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | ## 二、虚拟机多个静态IP配置 | ||||||
|  |  | ||||||
|  | 这里说一下多个静态IP的使用场景:主要是针对同一台电脑在经常在不同网络环境使用(办公,家庭,学习等),配置好多个IP后,在`hosts`文件中映射到同一个主机名,这样在不同网络中就可以直接启动Hadoop等软件。 | ||||||
|  |  | ||||||
|  | ### 1. 配置多网卡 | ||||||
|  |  | ||||||
|  | 这里我是用的虚拟机是virtualBox,开启多网卡配置方式如下: | ||||||
|  |  | ||||||
|  | <div align="center"> <img  src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/virtualbox-multi-network.png"/> </div> | ||||||
|  |  | ||||||
|  | ### 2. 查看网卡名称 | ||||||
|  |  | ||||||
|  | 使用`ifconfig`,查看第二块网卡名称,这里我的名称为`enp0s8`。 | ||||||
|  |  | ||||||
|  | <div align="center"> <img  src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/mutli-net-ip.png"/> </div> | ||||||
|  |  | ||||||
|  | ### 3. 配置第二块网卡 | ||||||
|  |  | ||||||
|  | 开启多网卡后并不会自动生成配置文件,需要拷贝`ifcfg-enp0s3`进行修改。 | ||||||
|  |  | ||||||
|  | ```shell | ||||||
|  | # cp ifcfg-enp0s3 ifcfg-enp0s8 | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | 静态IP配置方法如上,这里不再赘述。除了静态IP参数外,以下三个参数还需要修改,UUID必须与`ifcfg-enp0s3`中的不一样: | ||||||
|  |  | ||||||
|  | ```shell | ||||||
|  | NAME=enp0s8 | ||||||
|  | UUID=03d45df1-8514-4774-9b47-fddd6b9d9fcb | ||||||
|  | DEVICE=enp0s8 | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | ### 4. 重启网络服务器 | ||||||
|  |  | ||||||
|  | ```shell | ||||||
|  | #  systemctl restart network | ||||||
|  | ``` | ||||||
|  |  | ||||||
| @@ -1,38 +0,0 @@ | |||||||
| # 虚拟机静态IP配置 |  | ||||||
|  |  | ||||||
| >  虚拟机环境:centos 7.6 |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| ### 1. 查看当前网卡名称 |  | ||||||
|  |  | ||||||
| 	本机网卡名称为`enp0s3` |  | ||||||
|  |  | ||||||
| <div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/en0s3.png"/> </div> |  | ||||||
|  |  | ||||||
| ### 2. 编辑网络配置文件 |  | ||||||
|  |  | ||||||
| ```shell |  | ||||||
| # vim /etc/sysconfig/network-scripts/ifcfg-enp0s3 |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| 添加如下网络配置,指明静态IP和DNS: |  | ||||||
|  |  | ||||||
| ```shell |  | ||||||
| BOOTPROTO=static |  | ||||||
| IPADDR=192.168.200.226 |  | ||||||
| NETMASK=255.255.255.0 |  | ||||||
| GATEWAY=192.168.200.254 |  | ||||||
| DNS1=114.114.114.114 |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
| 修改后完整配置如下: |  | ||||||
|  |  | ||||||
| <div align="center"> <img src="https://github.com/heibaiying/BigData-Notes/blob/master/pictures/ifconfig.png"/> </div> |  | ||||||
|  |  | ||||||
| ### 3. 重启网络服务 |  | ||||||
|  |  | ||||||
| ```shell |  | ||||||
| #  systemctl restart network |  | ||||||
| ``` |  | ||||||
|  |  | ||||||
							
								
								
									
										
											BIN
										
									
								
								pictures/hadoop-code-mapping.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 142 KiB | 
							
								
								
									
										
											BIN
										
									
								
								pictures/hadoop-code-partitation.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 145 KiB | 
							
								
								
									
										
											BIN
										
									
								
								pictures/hadoop-code-reducer.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 268 KiB | 
| Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 17 KiB | 
							
								
								
									
										
											BIN
										
									
								
								pictures/ipconfig.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 5.7 KiB | 
							
								
								
									
										
											BIN
										
									
								
								pictures/mapreduce-with-combiners.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 76 KiB | 
							
								
								
									
										
											BIN
										
									
								
								pictures/mapreduce-without-combiners.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 45 KiB | 
							
								
								
									
										
											BIN
										
									
								
								pictures/mutli-net-ip.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 30 KiB | 
							
								
								
									
										
											BIN
										
									
								
								pictures/virtualbox-multi-network.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| After Width: | Height: | Size: 20 KiB |