RDD常用算子
This commit is contained in:
		| @@ -1,27 +0,0 @@ | ||||
| val list = List(3,6,9,10,12,21) | ||||
| val listRDD = sc.parallelize(list) | ||||
| val intsRDD = listRDD.map(_*10) | ||||
| intsRDD.foreach(println) | ||||
|  | ||||
| sc.parallelize(list).map(_*10).foreach(println) | ||||
|  | ||||
|  | ||||
| sc.parallelize(list).filter(_>=10).foreach(println) | ||||
|  | ||||
| val list = List(List(1, 2), List(3), List(), List(4, 5)) | ||||
| sc.parallelize(list).flatMap(_.toList).map(_*10).foreach(println) | ||||
|  | ||||
|  | ||||
| val list = List(1,2,3,4,5) | ||||
| sc.parallelize(list).reduce((x,y) => x+y) | ||||
| sc.parallelize(list).reduce(_+_) | ||||
|  | ||||
|  | ||||
| val list = List(("hadoop", 2), ("spark", 3), ("spark", 5), ("storm", 6),("hadoop", 2)) | ||||
| sc.parallelize(list).reduceByKey(_+_).foreach(println) | ||||
|  | ||||
|  | ||||
|  | ||||
|  val list = List(("hadoop", 2), ("spark", 3), ("spark", 5), ("storm", 6),("hadoop", 2)) | ||||
| sc.parallelize(list).groupByKey().map(x=>(x._1,x._2.toList)).foreach(println) | ||||
|  | ||||
| @@ -9,7 +9,7 @@ | ||||
|     <version>1.0</version> | ||||
|  | ||||
|     <properties> | ||||
|         <scala.version>2.12.8</scala.version> | ||||
|         <scala.version>2.12</scala.version> | ||||
|     </properties> | ||||
|  | ||||
|     <build> | ||||
| @@ -27,23 +27,20 @@ | ||||
|  | ||||
|  | ||||
|     <dependencies> | ||||
|         <!--spark核心依赖--> | ||||
|         <dependency> | ||||
|             <groupId>org.apache.spark</groupId> | ||||
|             <artifactId>spark-core_2.12</artifactId> | ||||
|             <artifactId>spark-core_${scala.version}</artifactId> | ||||
|             <version>2.4.0</version> | ||||
|         </dependency> | ||||
|         <dependency> | ||||
|             <groupId>org.scalatest</groupId> | ||||
|             <artifactId>scalatest_2.12</artifactId> | ||||
|             <version>3.0.1</version> | ||||
|             <scope>test</scope> | ||||
|         </dependency> | ||||
|         <!--单元测试依赖包--> | ||||
|         <dependency> | ||||
|             <groupId>junit</groupId> | ||||
|             <artifactId>junit</artifactId> | ||||
|             <version>4.12</version> | ||||
|         </dependency> | ||||
|         <!--Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10582--> | ||||
|         <!--如果出现异常:Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10582 | ||||
|           则是因为paranamer版本问题,添加下面的依赖包--> | ||||
|         <dependency> | ||||
|             <groupId>com.thoughtworks.paranamer</groupId> | ||||
|             <artifactId>paranamer</artifactId> | ||||
|   | ||||
| @@ -3,6 +3,8 @@ package rdd.scala | ||||
| import org.apache.spark.{SparkConf, SparkContext} | ||||
| import org.junit.{After, Test} | ||||
|  | ||||
| import scala.collection.mutable.ListBuffer | ||||
|  | ||||
| class TransformationTest { | ||||
|  | ||||
|   val conf: SparkConf = new SparkConf().setAppName("TransformationTest").setMaster("local[2]") | ||||
| @@ -11,10 +13,185 @@ class TransformationTest { | ||||
|  | ||||
|   @Test | ||||
|   def map(): Unit = { | ||||
|     val list = List(3, 6, 9, 10, 12, 21) | ||||
|     val list = List(1, 2, 3) | ||||
|     sc.parallelize(list).map(_ * 10).foreach(println) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def filter(): Unit = { | ||||
|     val list = List(3, 6, 9, 10, 12, 21) | ||||
|     sc.parallelize(list).filter(_ >= 10).foreach(println) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def flatMap(): Unit = { | ||||
|     val list = List(List(1, 2), List(3), List(), List(4, 5)) | ||||
|     sc.parallelize(list).flatMap(_.toList).map(_ * 10).foreach(println) | ||||
|  | ||||
|     val lines = List("spark flume spark", | ||||
|       "hadoop flume hive") | ||||
|     sc.parallelize(lines).flatMap(line => line.split(" ")). | ||||
|       map(word => (word, 1)).reduceByKey(_ + _).foreach(println) | ||||
|  | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def mapPartitions(): Unit = { | ||||
|     val list = List(1, 2, 3, 4, 5, 6) | ||||
|     sc.parallelize(list, 3).mapPartitions(iterator => { | ||||
|       val buffer = new ListBuffer[Int] | ||||
|       while (iterator.hasNext) { | ||||
|         buffer.append(iterator.next() * 100) | ||||
|       } | ||||
|       buffer.toIterator | ||||
|     }).foreach(println) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def mapPartitionsWithIndex(): Unit = { | ||||
|     val list = List(1, 2, 3, 4, 5, 6) | ||||
|     sc.parallelize(list, 3).mapPartitionsWithIndex((index, iterator) => { | ||||
|       val buffer = new ListBuffer[String] | ||||
|       while (iterator.hasNext) { | ||||
|         buffer.append(index + "分区:" + iterator.next() * 100) | ||||
|       } | ||||
|       buffer.toIterator | ||||
|     }).foreach(println) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def sample(): Unit = { | ||||
|     val list = List(1, 2, 3, 4, 5, 6) | ||||
|     sc.parallelize(list).sample(withReplacement = false, 0.5).foreach(println) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def union(): Unit = { | ||||
|     val list1 = List(1, 2, 3) | ||||
|     val list2 = List(4, 5, 6) | ||||
|     sc.parallelize(list1).union(sc.parallelize(list2)).foreach(println) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def intersection(): Unit = { | ||||
|     val list1 = List(1, 2, 3, 4, 5) | ||||
|     val list2 = List(4, 5, 6) | ||||
|     sc.parallelize(list1).intersection(sc.parallelize(list2)).foreach(println) | ||||
|   } | ||||
|  | ||||
|   @Test | ||||
|   def distinct(): Unit = { | ||||
|     val list = List(1, 2, 2, 4, 4) | ||||
|     sc.parallelize(list).distinct().foreach(println) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def groupByKey(): Unit = { | ||||
|     val list = List(("hadoop", 2), ("spark", 3), ("spark", 5), ("storm", 6), ("hadoop", 2)) | ||||
|     sc.parallelize(list).groupByKey().map(x => (x._1, x._2.toList)).foreach(println) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def reduceByKey(): Unit = { | ||||
|     val list = List(("hadoop", 2), ("spark", 3), ("spark", 5), ("storm", 6), ("hadoop", 2)) | ||||
|     sc.parallelize(list).reduceByKey(_ + _).foreach(println) | ||||
|   } | ||||
|  | ||||
|   @Test | ||||
|   def aggregateByKey(): Unit = { | ||||
|     val list = List(("hadoop", 3), ("hadoop", 2), ("spark", 4), ("spark", 3), ("storm", 6), ("storm", 8)) | ||||
|     sc.parallelize(list, numSlices = 6).aggregateByKey(zeroValue = 0, numPartitions = 5)( | ||||
|       seqOp = math.max(_, _), | ||||
|       combOp = _ + _ | ||||
|     ).getNumPartitions | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def sortBy(): Unit = { | ||||
|     val list01 = List((100, "hadoop"), (90, "spark"), (120, "storm")) | ||||
|     sc.parallelize(list01).sortByKey(ascending = false).foreach(println) | ||||
|  | ||||
|     val list02 = List(("hadoop", 100), ("spark", 90), ("storm", 120)) | ||||
|     sc.parallelize(list02).sortBy(x => x._2, ascending = false).foreach(println) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def join(): Unit = { | ||||
|     val list01 = List((1, "student01"), (2, "student02"), (3, "student03")) | ||||
|     val list02 = List((1, "teacher01"), (2, "teacher02"), (3, "teacher03")) | ||||
|     sc.parallelize(list01).join(sc.parallelize(list02)).foreach(println) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def cogroup(): Unit = { | ||||
|     val list01 = List((1, "a"), (1, "a"), (2, "b"), (3, "e")) | ||||
|     val list02 = List((1, "A"), (2, "B"), (3, "E")) | ||||
|     val list03 = List((1, "[ab]"), (2, "[bB]"), (3, "eE"), (3, "eE")) | ||||
|     sc.parallelize(list01).cogroup(sc.parallelize(list02), sc.parallelize(list03)).foreach(println) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def cartesian(): Unit = { | ||||
|     val list1 = List("A", "B", "C") | ||||
|     val list2 = List(1, 2, 3) | ||||
|     sc.parallelize(list1).cartesian(sc.parallelize(list2)).foreach(println) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def reduce(): Unit = { | ||||
|     val list = List(1, 2, 3, 4, 5) | ||||
|     sc.parallelize(list).reduce((x, y) => x + y) | ||||
|     sc.parallelize(list).reduce(_ + _) | ||||
|   } | ||||
|  | ||||
|   // 继承Ordering[T],实现自定义比较器 | ||||
|   class CustomOrdering extends Ordering[(Int, String)] { | ||||
|     override def compare(x: (Int, String), y: (Int, String)): Int | ||||
|     = if (x._2.length > y._2.length) 1 else -1 | ||||
|   } | ||||
|  | ||||
|   @Test | ||||
|   def takeOrdered(): Unit = { | ||||
|     val list = List((1, "hadoop"), (1, "storm"), (1, "azkaban"), (1, "hive")) | ||||
|     //  定义隐式默认值 | ||||
|     implicit val implicitOrdering = new CustomOrdering | ||||
|     sc.parallelize(list).takeOrdered(5) | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @Test | ||||
|   def countByKey(): Unit = { | ||||
|     val list = List(("hadoop", 10), ("hadoop", 10), ("storm", 3), ("storm", 3), ("azkaban", 1)) | ||||
|     sc.parallelize(list).countByKey() | ||||
|   } | ||||
|  | ||||
|   @Test | ||||
|   def saveAsTextFile(): Unit = { | ||||
|     val list = List(("hadoop", 10), ("hadoop", 10), ("storm", 3), ("storm", 3), ("azkaban", 1)) | ||||
|     sc.parallelize(list).saveAsTextFile("/usr/file/temp") | ||||
|   } | ||||
|  | ||||
|   @Test | ||||
|   def saveAsSequenceFile(): Unit = { | ||||
|     val list = List(("hadoop", 10), ("hadoop", 10), ("storm", 3), ("storm", 3), ("azkaban", 1)) | ||||
|     sc.parallelize(list).saveAsSequenceFile("/usr/file/sequence") | ||||
|   } | ||||
|  | ||||
|  | ||||
|   @After | ||||
|   def destroy(): Unit = { | ||||
|     sc.stop() | ||||
|   | ||||
		Reference in New Issue
	
	Block a user