# 基于ZooKeeper搭建Spark高可用集群
## 一、集群规划
这里搭建一个 3 节点的 Spark 集群,其中三台主机上均部署 `Worker` 服务。同时为了保证高可用,除了在 hadoop001 上部署主 `Master` 服务外,还在 hadoop002 和 hadoop003 上分别部署备用的 `Master` 服务,Master 服务由 Zookeeper 集群进行协调管理,如果主 `Master` 不可用,则备用 `Master` 会成为新的主 `Master`。
## 二、前置条件
搭建 Spark 集群前,需要保证 JDK 环境、Zookeeper 集群和 Hadoop 集群已经搭建,相关步骤可以参阅:
- [Linux 环境下 JDK 安装](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Linux下JDK安装.md)
- [Zookeeper 单机环境和集群环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Zookeeper单机环境和集群环境搭建.md)
- [Hadoop 集群环境搭建](https://github.com/heibaiying/BigData-Notes/blob/master/notes/installation/Hadoop集群环境搭建.md)
## 三、Spark集群搭建
### 3.1 下载解压
下载所需版本的 Spark,官网下载地址:http://spark.apache.org/downloads.html
下载后进行解压:
```shell
# tar -zxvf spark-2.2.3-bin-hadoop2.6.tgz
```
### 3.2 配置环境变量
```shell
# vim /etc/profile
```
添加环境变量:
```shell
export SPARK_HOME=/usr/app/spark-2.2.3-bin-hadoop2.6
export PATH=${SPARK_HOME}/bin:$PATH
```
使得配置的环境变量立即生效:
```shell
# source /etc/profile
```
### 3.3 集群配置
进入 `${SPARK_HOME}/conf` 目录,拷贝配置样本进行修改:
#### 1. spark-env.sh
```she
cp spark-env.sh.template spark-env.sh
```
```shell
# 配置JDK安装位置
JAVA_HOME=/usr/java/jdk1.8.0_201
# 配置hadoop配置文件的位置
HADOOP_CONF_DIR=/usr/app/hadoop-2.6.0-cdh5.15.2/etc/hadoop
# 配置zookeeper地址
SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=hadoop001:2181,hadoop002:2181,hadoop003:2181 -Dspark.deploy.zookeeper.dir=/spark"
```
#### 2. slaves
```
cp slaves.template slaves
```
配置所有 Woker 节点的位置:
```properties
hadoop001
hadoop002
hadoop003
```
### 3.4 安装包分发
将 Spark 的安装包分发到其他服务器,分发后建议在这两台服务器上也配置一下 Spark 的环境变量。
```shell
scp -r /usr/app/spark-2.4.0-bin-hadoop2.6/ hadoop002:usr/app/
scp -r /usr/app/spark-2.4.0-bin-hadoop2.6/ hadoop003:usr/app/
```
## 四、启动集群
### 4.1 启动ZooKeeper集群
分别到三台服务器上启动 ZooKeeper 服务:
```shell
zkServer.sh start
```
### 4.2 启动Hadoop集群
```shell
# 启动dfs服务
start-dfs.sh
# 启动yarn服务
start-yarn.sh
```
### 4.3 启动Spark集群
进入 hadoop001 的 ` ${SPARK_HOME}/sbin` 目录下,执行下面命令启动集群。执行命令后,会在 hadoop001 上启动 `Maser` 服务,会在 `slaves` 配置文件中配置的所有节点上启动 `Worker` 服务。
```shell
start-all.sh
```
分别在 hadoop002 和 hadoop003 上执行下面的命令,启动备用的 `Master` 服务:
```shell
# ${SPARK_HOME}/sbin 下执行
start-master.sh
```
### 4.4 查看服务
查看 Spark 的 Web-UI 页面,端口为 `8080`。此时可以看到 hadoop001 上的 Master 节点处于 `ALIVE` 状态,并有 3 个可用的 `Worker` 节点。
而 hadoop002 和 hadoop003 上的 Master 节点均处于 `STANDBY` 状态,没有可用的 `Worker` 节点。
## 五、验证集群高可用
此时可以使用 `kill` 命令杀死 hadoop001 上的 `Master` 进程,此时备用 `Master` 会中会有一个再次成为 ` 主 Master`,我这里是 hadoop002,可以看到 hadoop2 上的 `Master` 经过 `RECOVERING` 后成为了新的主 `Master`,并且获得了全部可以用的 `Workers`。
Hadoop002 上的 `Master` 成为主 `Master`,并获得了全部可以用的 `Workers`。
此时如果你再在 hadoop001 上使用 `start-master.sh` 启动 Master 服务,那么其会作为备用 `Master` 存在。
## 六、提交作业
和单机环境下的提交到 Yarn 上的命令完全一致,这里以 Spark 内置的计算 Pi 的样例程序为例,提交命令如下:
```shell
spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode client \
--executor-memory 1G \
--num-executors 10 \
/usr/app/spark-2.4.0-bin-hadoop2.6/examples/jars/spark-examples_2.11-2.4.0.jar \
100
```