# Storm集成HDFS和HBase
## 一、Storm集成HDFS
### 1.1 项目结构
> 本用例源码下载地址:[storm-hdfs-integration](https://github.com/heibaiying/BigData-Notes/tree/master/code/Storm/storm-hdfs-integration)
### 1.2 项目主要依赖
项目主要依赖如下,有两个需要注意:
+ 这里由于我服务器上安装的是CDH版本的Hadoop,在导入依赖时引入的也是CDH版本的依赖,需要使用``标签指定CDH的仓库地址;
+ `hadoop-common`、`hadoop-client`、`hadoop-hdfs`均需要排除`slf4j-log4j12`依赖,原因是`storm-core`中已经有该依赖,不排除的话有JAR包冲突的风险;
```xml
1.2.2
cloudera
https://repository.cloudera.com/artifactory/cloudera-repos/
org.apache.storm
storm-core
${storm.version}
org.apache.storm
storm-hdfs
${storm.version}
org.apache.hadoop
hadoop-common
2.6.0-cdh5.15.2
org.slf4j
slf4j-log4j12
org.apache.hadoop
hadoop-client
2.6.0-cdh5.15.2
org.slf4j
slf4j-log4j12
org.apache.hadoop
hadoop-hdfs
2.6.0-cdh5.15.2
org.slf4j
slf4j-log4j12
```
### 1.3 DataSourceSpout
```java
/**
* 产生词频样本的数据源
*/
public class DataSourceSpout extends BaseRichSpout {
private List list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive");
private SpoutOutputCollector spoutOutputCollector;
@Override
public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) {
this.spoutOutputCollector = spoutOutputCollector;
}
@Override
public void nextTuple() {
// 模拟产生数据
String lineData = productData();
spoutOutputCollector.emit(new Values(lineData));
Utils.sleep(1000);
}
@Override
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare(new Fields("line"));
}
/**
* 模拟数据
*/
private String productData() {
Collections.shuffle(list);
Random random = new Random();
int endIndex = random.nextInt(list.size()) % (list.size()) + 1;
return StringUtils.join(list.toArray(), "\t", 0, endIndex);
}
}
```
产生的模拟数据格式如下:
```properties
Spark HBase
Hive Flink Storm Hadoop HBase Spark
Flink
HBase Storm
HBase Hadoop Hive Flink
HBase Flink Hive Storm
Hive Flink Hadoop
HBase Hive
Hadoop Spark HBase Storm
```
### 1.4 将数据存储到HDFS
这里HDFS的地址和数据存储路径均使用了硬编码,在实际开发中可以通过外部传参指定,这样程序更为灵活。
```java
public class DataToHdfsApp {
private static final String DATA_SOURCE_SPOUT = "dataSourceSpout";
private static final String HDFS_BOLT = "hdfsBolt";
public static void main(String[] args) {
// 指定Hadoop的用户名 如果不指定,则在HDFS创建目录时候有可能抛出无权限的异常(RemoteException: Permission denied)
System.setProperty("HADOOP_USER_NAME", "root");
// 定义输出字段(Field)之间的分隔符
RecordFormat format = new DelimitedRecordFormat()
.withFieldDelimiter("|");
// 同步策略: 每100个tuples之后就会把数据从缓存刷新到HDFS中
SyncPolicy syncPolicy = new CountSyncPolicy(100);
// 文件策略: 每个文件大小上限1M,超过限定时,创建新文件并继续写入
FileRotationPolicy rotationPolicy = new FileSizeRotationPolicy(1.0f, Units.MB);
// 定义存储路径
FileNameFormat fileNameFormat = new DefaultFileNameFormat()
.withPath("/storm-hdfs/");
// 定义HdfsBolt
HdfsBolt hdfsBolt = new HdfsBolt()
.withFsUrl("hdfs://hadoop001:8020")
.withFileNameFormat(fileNameFormat)
.withRecordFormat(format)
.withRotationPolicy(rotationPolicy)
.withSyncPolicy(syncPolicy);
// 构建Topology
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout());
// save to HDFS
builder.setBolt(HDFS_BOLT, hdfsBolt, 1).shuffleGrouping(DATA_SOURCE_SPOUT);
// 如果外部传参cluster则代表线上环境启动,否则代表本地启动
if (args.length > 0 && args[0].equals("cluster")) {
try {
StormSubmitter.submitTopology("ClusterDataToHdfsApp", new Config(), builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
e.printStackTrace();
}
} else {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("LocalDataToHdfsApp",
new Config(), builder.createTopology());
}
}
}
```
### 1.5 启动测试
可以用直接使用本地模式运行,也可以打包后提交到服务器集群运行。本仓库提供的源码默认采用`maven-shade-plugin`进行打包,打包命令如下:
```shell
# mvn clean package -D maven.test.skip=true
```
运行后,数据会存储到HDFS的`/storm-hdfs`目录下。使用以下命令可以查看目录内容:
```shell
# 查看目录内容
hadoop fs -ls /storm-hdfs
# 监听文内容变化
hadoop fs -tail -f /strom-hdfs/文件名
```
## 二、Storm集成HBase
### 2.1 项目结构
集成用例: 进行词频统计并将最后的结果存储到HBase,项目主要结构如下:
> 本用例源码下载地址:[storm-hbase-integration](https://github.com/heibaiying/BigData-Notes/tree/master/code/Storm/storm-hbase-integration)
### 2.2 项目主要依赖
```xml
1.2.2
org.apache.storm
storm-core
${storm.version}
org.apache.storm
storm-hbase
${storm.version}
```
### 2.3 DataSourceSpout
```java
/**
* 产生词频样本的数据源
*/
public class DataSourceSpout extends BaseRichSpout {
private List list = Arrays.asList("Spark", "Hadoop", "HBase", "Storm", "Flink", "Hive");
private SpoutOutputCollector spoutOutputCollector;
@Override
public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector spoutOutputCollector) {
this.spoutOutputCollector = spoutOutputCollector;
}
@Override
public void nextTuple() {
// 模拟产生数据
String lineData = productData();
spoutOutputCollector.emit(new Values(lineData));
Utils.sleep(1000);
}
@Override
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare(new Fields("line"));
}
/**
* 模拟数据
*/
private String productData() {
Collections.shuffle(list);
Random random = new Random();
int endIndex = random.nextInt(list.size()) % (list.size()) + 1;
return StringUtils.join(list.toArray(), "\t", 0, endIndex);
}
}
```
产生的模拟数据格式如下:
```properties
Spark HBase
Hive Flink Storm Hadoop HBase Spark
Flink
HBase Storm
HBase Hadoop Hive Flink
HBase Flink Hive Storm
Hive Flink Hadoop
HBase Hive
Hadoop Spark HBase Storm
```
### 2.4 SplitBolt
```java
/**
* 将每行数据按照指定分隔符进行拆分
*/
public class SplitBolt extends BaseRichBolt {
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
}
@Override
public void execute(Tuple input) {
String line = input.getStringByField("line");
String[] words = line.split("\t");
for (String word : words) {
collector.emit(tuple(word, 1));
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}
```
### 2.5 CountBolt
```java
/**
* 进行词频统计
*/
public class CountBolt extends BaseRichBolt {
private Map counts = new HashMap<>();
private OutputCollector collector;
@Override
public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector=collector;
}
@Override
public void execute(Tuple input) {
String word = input.getStringByField("word");
Integer count = counts.get(word);
if (count == null) {
count = 0;
}
count++;
counts.put(word, count);
// 输出
collector.emit(new Values(word, String.valueOf(count)));
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));
}
}
```
### 2.6 WordCountToHBaseApp
```java
/**
* 进行词频统计 并将统计结果存储到HBase中
*/
public class WordCountToHBaseApp {
private static final String DATA_SOURCE_SPOUT = "dataSourceSpout";
private static final String SPLIT_BOLT = "splitBolt";
private static final String COUNT_BOLT = "countBolt";
private static final String HBASE_BOLT = "hbaseBolt";
public static void main(String[] args) {
// storm的配置
Config config = new Config();
// HBase的配置
Map hbConf = new HashMap<>();
hbConf.put("hbase.rootdir", "hdfs://hadoop001:8020/hbase");
hbConf.put("hbase.zookeeper.quorum", "hadoop001:2181");
// 将HBase的配置传入Storm的配置中
config.put("hbase.conf", hbConf);
// 定义流数据与HBase中数据的映射
SimpleHBaseMapper mapper = new SimpleHBaseMapper()
.withRowKeyField("word")
.withColumnFields(new Fields("word","count"))
.withColumnFamily("info");
/*
* 给HBaseBolt传入表名、数据映射关系、和HBase的配置信息
* 表需要预先创建: create 'WordCount','info'
*/
HBaseBolt hbase = new HBaseBolt("WordCount", mapper)
.withConfigKey("hbase.conf");
// 构建Topology
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(DATA_SOURCE_SPOUT, new DataSourceSpout(),1);
// split
builder.setBolt(SPLIT_BOLT, new SplitBolt(), 1).shuffleGrouping(DATA_SOURCE_SPOUT);
// count
builder.setBolt(COUNT_BOLT, new CountBolt(),1).shuffleGrouping(SPLIT_BOLT);
// save to HBase
builder.setBolt(HBASE_BOLT, hbase, 1).shuffleGrouping(COUNT_BOLT);
// 如果外部传参cluster则代表线上环境启动,否则代表本地启动
if (args.length > 0 && args[0].equals("cluster")) {
try {
StormSubmitter.submitTopology("ClusterWordCountToRedisApp", config, builder.createTopology());
} catch (AlreadyAliveException | InvalidTopologyException | AuthorizationException e) {
e.printStackTrace();
}
} else {
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("LocalWordCountToRedisApp",
config, builder.createTopology());
}
}
}
```
### 2.7 启动测试
可以用直接使用本地模式运行,也可以打包后提交到服务器集群运行。本仓库提供的源码默认采用`maven-shade-plugin`进行打包,打包命令如下:
```shell
# mvn clean package -D maven.test.skip=true
```
运行后,数据会存储到HBase的`WordCount`表中。使用以下命令查看表的内容:
```shell
hbase > scan 'WordCount'
```
### 2.8 withCounterFields
在上面的用例中我们是手动编码来实现词频统计,并将最后的结果存储到HBase中。其实也可以在构建`SimpleHBaseMapper`的时候通过`withCounterFields`指定count字段,被指定的字段会自动进行累加操作,这样也可以实现词频统计。需要注意的是withCounterFields指定的字段必须是Long类型,不能是String类型。
```java
SimpleHBaseMapper mapper = new SimpleHBaseMapper()
.withRowKeyField("word")
.withColumnFields(new Fields("word"))
.withCounterFields(new Fields("count"))
.withColumnFamily("cf");
```
## 参考资料
1. [Apache HDFS Integration](http://storm.apache.org/releases/2.0.0-SNAPSHOT/storm-hdfs.html)
2. [Apache HBase Integration](http://storm.apache.org/releases/2.0.0-SNAPSHOT/storm-hbase.html)