# 集群资源管理器——YARN ## 一、hadoop yarn 简介 **Apache YARN** (Yet Another Resource Negotiator) 是hadoop 2.0 引入的集群资源管理系统。用户可以将各种服务框架部署在YARN上,由YARN进行统一地管理和资源分配。
## 二、YARN架构
### 1. ResourceManager `ResourceManager`通常在独立的机器上以后台进程的形式运行,它是整个集群资源的主要协调者和管理者。`ResourceManager`负责给用户提交的所有应用程序分配资源,它根据应用程序优先级、队列容量、ACLs、数据位置等信息,做出决策,然后以共享的、安全的、多租户的方式制定分配策略,调度集群资源。 ### 2. NodeManager `NodeManager`是YARN集群中的每个具体节点的管理者。主要负责该节点内所有容器的生命周期的管理,监视资源和跟踪节点健康。具体如下: - 启动时向`ResourceManager`注册并定时发送心跳消息,等待`ResourceManager`的指令; - 维护`Container`的生命周期,监控`Container`的资源使用情况; - 管理任务运行时的相关依赖,根据`ApplicationMaster`的需要,在启动`Container`之前将需要的程序及其依赖拷贝到本地。 ### 3. ApplicationMaster 在用户提交一个应用程序时,YARN会启动一个轻量级的进程`ApplicationMaster`。`ApplicationMaster`负责协调来自 `ResourceManager`的资源,并通过`NodeManager` 监视容器内资源的使用情况,同时还负责任务的监控与容错。具体如下: - 根据应用的运行状态来决定动态计算资源需求; - 向`ResourceManager`申请资源,监控申请的资源的使用情况; - 跟踪任务状态和进度,报告资源的使用情况和应用的进度信息; - 负责任务的容错。 ### 4. Contain `Container`是YARN中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等。当AM向RM申请资源时,RM为AM返回的资源是用`Container`表示的。YARN会为每个任务分配一个`Container`,该任务只能使用该`Container`中描述的资源。`ApplicationMaster`可在`Container`内运行任何类型的任务。例如,`MapReduce ApplicationMaster`请求一个容器来启动 map 或 reduce 任务,而`Giraph ApplicationMaster`请求一个容器来运行 Giraph 任务。 ## 三、YARN工作原理简述
1. `Client`提交作业到YARN上; 2. `Resource Manager`选择一个`Node Manager`,启动一个`Container`并运行`Application Master`实例; 3. `Application Master`根据实际需要向`Resource Manager`请求更多的`Container`资源(如果作业很小, 应用管理器会选择在其自己的JVM中运行任务); 4. `Application Master`通过获取到的`Container`资源执行分布式计算。 ## 四、YARN工作原理详述
#### 1. 作业提交 client调用job.waitForCompletion方法,向整个集群提交MapReduce作业 (第1步) 。新的作业ID(应用ID)由资源管理器分配(第2步)。作业的client核实作业的输出, 计算输入的split, 将作业的资源(包括Jar包,配置文件, split信息)拷贝给HDFS(第3步)。 最后, 通过调用资源管理器的submitApplication()来提交作业(第4步)。 #### 2. 作业初始化 当资源管理器收到submitApplciation()的请求时, 就将该请求发给调度器(scheduler), 调度器分配container, 然后资源管理器在该container内启动应用管理器进程, 由节点管理器监控(第5步)。 MapReduce作业的应用管理器是一个主类为MRAppMaster的Java应用,其通过创造一些bookkeeping对象来监控作业的进度, 得到任务的进度和完成报告(第6步)。然后其通过分布式文件系统得到由客户端计算好的输入split(第7步),然后为每个输入split创建一个map任务, 根据mapreduce.job.reduces创建reduce任务对象。 #### 3. 任务分配 如果作业很小, 应用管理器会选择在其自己的JVM中运行任务。 如果不是小作业, 那么应用管理器向资源管理器请求container来运行所有的map和reduce任务(第8步)。这些请求是通过心跳来传输的, 包括每个map任务的数据位置,比如存放输入split的主机名和机架(rack),调度器利用这些信息来调度任务,尽量将任务分配给存储数据的节点, 或者分配给和存放输入split的节点相同机架的节点。 #### 4. 任务运行 当一个任务由资源管理器的调度器分配给一个container后,应用管理器通过联系节点管理器来启动container(第9步)。任务由一个主类为YarnChild的Java应用执行, 在运行任务之前首先本地化任务需要的资源,比如作业配置,JAR文件, 以及分布式缓存的所有文件(第10步。 最后, 运行map或reduce任务(第11步)。 YarnChild运行在一个专用的JVM中, 但是YARN不支持JVM重用。 #### 5. 进度和状态更新 YARN中的任务将其进度和状态(包括counter)返回给应用管理器, 客户端每秒(通mapreduce.client.progressmonitor.pollinterval设置)向应用管理器请求进度更新, 展示给用户。 #### 6. 作业完成 除了向应用管理器请求作业进度外, 客户端每5分钟都会通过调用waitForCompletion()来检查作业是否完成,时间间隔可以通过mapreduce.client.completion.pollinterval来设置。作业完成之后, 应用管理器和container会清理工作状态, OutputCommiter的作业清理方法也会被调用。作业的信息会被作业历史服务器存储以备之后用户核查。 ## 五、提交作业到YARN上运行 这里以提交Hadoop Examples中计算Pi的MApReduce程序为例,相关Jar包在Hadoop安装目录的`share/hadoop/mapreduce`目录下: ```shell # 提交格式: hadoop jar jar包路径 主类名称 主类参数 # hadoop jar hadoop-mapreduce-examples-2.6.0-cdh5.15.2.jar pi 3 3 ``` ## 参考资料 1. [初步掌握Yarn的架构及原理](https://www.cnblogs.com/codeOfLife/p/5492740.html) 2. [Apache Hadoop 2.9.2 > Apache Hadoop YARN](http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html)