✨ cpu 上下文
This commit is contained in:
parent
630f201217
commit
dddb7e2330
@ -23,17 +23,36 @@ Linux 按照特权等级,把进程的运行空间分为内核空间和用户
|
||||
|
||||
进程既可以在用户空间运行,又可以在内核空间中运行。进程在用户空间运行时,被称为进程的用户态,而陷入内核空间的时候,被称为进程的内核态。
|
||||
|
||||
从用户态到内核态的转变,需要通过系统调用来完成。比如,当我们查看文件内容时,就需要多次系统调用来完成:首先调用 open() 打开文件,然后调用 read() 读取文件内容,并调用 write() 将内容写到标准输出,最后再调用 close() 关闭文件。
|
||||
从用户态到内核态的转变,需要通过 __系统调用__ 来完成。比如,当我们查看文件内容时,就需要多次系统调用来完成:首先调用 open() 打开文件,然后调用 read() 读取文件内容,并调用 write() 将内容写到标准输出,最后再调用 close() 关闭文件。
|
||||
|
||||
系统调用的过程也会发生 CPU 上下文的切换
|
||||
|
||||
CPU 寄存器里原来用户态的指令位置,需要先保存起来。接着,为了执行内核态代码,CPU 寄存器需要更新为内核态指令的新位置。最后才是跳转到内核态运行内核任务。
|
||||
|
||||
而系统调用结束后,CPU 寄存器需要恢复原来保存的用户态,然后再切换到用户空间,继续运行进程。所以, __一次系统调用的过程,其实是发生了两次 CPU 上下文切换__。
|
||||
而系统调用结束后,CPU 寄存器需要 __恢复__原来保存的用户态,然后再切换到用户空间,继续运行进程。所以, __一次系统调用的过程,其实是发生了两次 CPU 上下文切换__。
|
||||
|
||||
需要注意的是,系统调用过程中,并不会涉及到虚拟内存等进程用户态的资源,也
|
||||
不会切换进程。这跟我们通常所说的进程上下文切换是不一样的: __进程上下文切换,是指从一个进程切换到另一个进程运行。而系统调用过程中一直是同一个进程在运行__ 。所以,__系统调用过程通常称为特权模式切换,而不是上下文切换__。但实际上,系统调用过程中,CPU 的上下文切换还是无法避免的。
|
||||
|
||||
#### 进程在什么时候才会被调度到 CPU 上运行
|
||||
|
||||
最容易想到的一个时机,就是进程执行完终止了,它之前使用的 CPU 会释放出来,这个时候再从就绪队列里,拿一个新的进程过来运行。其实还有很多其他场景,也会触发进程调度
|
||||
|
||||
其一,为了保证所有进程可以得到公平调度,CPU 时间被划分为一段段的时间片,这些时间片再被轮流分配给各个进程。这样,当某个进程的时间片耗尽了,就会被系统挂起,切换到其它正在等待 CPU 的进程运行。
|
||||
|
||||
其二,进程在系统资源不足(比如内存不足)时,要等到资源满足后才可以运行,这个时
|
||||
候进程也会被挂起,并由系统调度其他进程运行。
|
||||
|
||||
其三,当进程通过睡眠函数 sleep 这样的方法将自己主动挂起时,自然也会重新调度。
|
||||
|
||||
其四,当有优先级更高的进程运行时,为了保证高优先级进程的运行,当前进程会被挂
|
||||
起,由高优先级进程来运行。
|
||||
|
||||
最后一个,发生硬件中断时,CPU 上的进程会被中断挂起,转而执行内核中的中断服务程序。
|
||||
|
||||
了解这几个场景是非常有必要的,因为一旦出现上下文切换的性能问题,它们就是幕后凶
|
||||
手。
|
||||
|
||||
#### 线程上下文切换
|
||||
|
||||
__线程与进程最大的区别在于,线程是调度的基本单位,而进程则是资源拥有的基本单位__。说白了,所谓内核中的任务调度,实际上的调度对象是线程;而进程只是给线程提供了虚拟内存、全局变量等资源。
|
||||
@ -55,5 +74,60 @@ __线程与进程最大的区别在于,线程是调度的基本单位,而进
|
||||
|
||||
跟进程上下文不同,中断上下文切换并不涉及到进程的用户态。所以,即便中断过程打断了一个正处在用户态的进程,也不需要保存和恢复这个进程的虚拟内存、全局变量等用户 态资源。中断上下文,其实只包括内核态中断服务程序执行所必需的状态,包括 CPU 寄存器、内核堆栈、硬件中断参数等。
|
||||
|
||||
|
||||
对同一个 CPU 来说,中断处理比进程拥有更高的优先级,所以中断上下文切换并不会与进程上下文切换同时发生。同样道理,由于中断会打断正常进程的调度和执行,所以大部分中断处理程序都短小精悍,以便尽可能快的执行结束。
|
||||
|
||||
## 怎么查看系统的上下文切换情况
|
||||
|
||||
vmstat 是一个常用的系统性能分析工具,主要用来分析系统的内存使用情况,也常用来分 析 CPU 上下文切换和中断的次数。
|
||||
|
||||
下面就是一个 vmstat 的使用示例:
|
||||
|
||||
```
|
||||
vmstat 5 #每隔 5 秒输出 1 组数据
|
||||
```
|
||||
|
||||
```
|
||||
procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----
|
||||
r b swpd free buff cache si so bi bo in cs us sy id wa st
|
||||
0 0 0 1293264 180568 2046324 0 0 0 5 2 8 1 0 99 0 0
|
||||
```
|
||||
|
||||
结果含义说明
|
||||
|
||||
- cs(context switch)是每秒上下文切换的次数。
|
||||
|
||||
- in(interrupt)则是每秒中断的次数。
|
||||
|
||||
- r(Running or Runnable)是就绪队列的长度,也就是正在运行和等待 CPU 的进程数。
|
||||
|
||||
- b(Blocked)则是处于不可中断睡眠状态的进程数。
|
||||
|
||||
可以看到,这个例子中的上下文切换次数 cs 是 8 次,而系统中断次数 in 则是 2 次,而 就绪队列长度 r 和不可中断状态进程数 b 都是 0。
|
||||
|
||||
vmstat 只给出了系统总体的上下文切换情况,要想查看每个进程的详细情况,就需要使用我们前面提到过的 pidstat 了。给它加上 -w 选项,你就可以查看每个进程上下文切换的情况了。
|
||||
|
||||
示例:
|
||||
|
||||
```
|
||||
pidstat -w 5 # 每隔 5 秒输出 1 组数据
|
||||
```
|
||||
|
||||
```
|
||||
Linux 4.4.0-142-generic (10-53-166-171) 07/07/2019 _x86_64_ (2 CPU)
|
||||
|
||||
04:05:53 PM UID PID cswch/s nvcswch/s Command
|
||||
04:05:58 PM 0 1 1.80 0.00 systemd
|
||||
04:05:58 PM 0 3 6.39 0.00 ksoftirqd/0
|
||||
04:05:58 PM 0 7 33.33 0.00 rcu_sched
|
||||
04:05:58 PM 0 9 0.40 0.00 migration/0
|
||||
04:05:58 PM 0 10 0.20 0.00 watchdog/0
|
||||
```
|
||||
|
||||
这个结果中有两列内容是我们的重点关注对象。一个是 cswch ,表示每秒自愿上下文切换 (voluntary context switches)的次数,另一个则是 nvcswch ,表示每秒非自愿上下文切换(non voluntary context switches)的次数。
|
||||
|
||||
这两个概念一定要牢牢记住,因为它们意味着不同的性能问题:
|
||||
|
||||
__自愿上下文切换__,是指进程无法获取所需资源,导致的上下文切换。比如说, I/O、内存等系统资源不足时,就会发生自愿上下文切换。
|
||||
|
||||
__非自愿上下文切换__,则是指进程由于时间片已到等原因,被系统强制调度,进而发生的上下文切换。比如说,大量进程都在争抢 CPU 时,就容易发生非自愿上下文切换。
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user