feat(ccw): migrate backend to TypeScript

- Convert 40 JS files to TypeScript (CLI, tools, core, MCP server)
- Add Zod for runtime parameter validation
- Add type definitions in src/types/
- Keep src/templates/ as JavaScript (dashboard frontend)
- Update bin entries to use dist/
- Add tsconfig.json with strict mode
- Add backward-compatible exports for tests
- All 39 tests passing

Breaking changes: None (backward compatible)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
catlog22
2025-12-13 10:43:15 +08:00
parent d4e59770d0
commit 25ac862f46
93 changed files with 5531 additions and 9302 deletions

View File

@@ -0,0 +1,683 @@
/**
* Smart Search Tool - Unified search with mode-based execution
* Modes: auto, exact, fuzzy, semantic, graph
*
* Features:
* - Intent classification (auto mode)
* - Multi-backend search routing
* - Result fusion with RRF ranking
* - Configurable search parameters
*/
import { z } from 'zod';
import type { ToolSchema, ToolResult } from '../types/tool.js';
import { spawn, execSync } from 'child_process';
import {
ensureReady as ensureCodexLensReady,
executeCodexLens,
} from './codex-lens.js';
// Define Zod schema for validation
const ParamsSchema = z.object({
query: z.string().min(1, 'Query is required'),
mode: z.enum(['auto', 'exact', 'fuzzy', 'semantic', 'graph']).default('auto'),
paths: z.array(z.string()).default([]),
contextLines: z.number().default(0),
maxResults: z.number().default(100),
includeHidden: z.boolean().default(false),
});
type Params = z.infer<typeof ParamsSchema>;
// Search mode constants
const SEARCH_MODES = ['auto', 'exact', 'fuzzy', 'semantic', 'graph'] as const;
// Classification confidence threshold
const CONFIDENCE_THRESHOLD = 0.7;
interface Classification {
mode: string;
confidence: number;
reasoning: string;
}
interface ExactMatch {
file: string;
line: number;
column: number;
content: string;
}
interface SemanticMatch {
file: string;
score: number;
content: string;
symbol: string | null;
}
interface GraphMatch {
file: string;
symbols: unknown;
relationships: unknown[];
}
interface SearchMetadata {
mode: string;
backend: string;
count: number;
query: string;
classified_as?: string;
confidence?: number;
reasoning?: string;
warning?: string;
note?: string;
}
interface SearchResult {
success: boolean;
results?: ExactMatch[] | SemanticMatch[] | GraphMatch[];
output?: string;
metadata?: SearchMetadata;
error?: string;
}
/**
* Detection heuristics for intent classification
*/
/**
* Detect literal string query (simple alphanumeric or quoted strings)
*/
function detectLiteral(query: string): boolean {
return /^[a-zA-Z0-9_-]+$/.test(query) || /^["'].*["']$/.test(query);
}
/**
* Detect regex pattern (contains regex metacharacters)
*/
function detectRegex(query: string): boolean {
return /[.*+?^${}()|[\]\\]/.test(query);
}
/**
* Detect natural language query (sentence structure, questions, multi-word phrases)
*/
function detectNaturalLanguage(query: string): boolean {
return query.split(/\s+/).length >= 3 || /\?$/.test(query);
}
/**
* Detect file path query (path separators, file extensions)
*/
function detectFilePath(query: string): boolean {
return /[/\\]/.test(query) || /\.[a-z]{2,4}$/i.test(query);
}
/**
* Detect relationship query (import, export, dependency keywords)
*/
function detectRelationship(query: string): boolean {
return /(import|export|uses?|depends?|calls?|extends?)\s/i.test(query);
}
/**
* Classify query intent and recommend search mode
* @param query - Search query string
* @returns Classification result
*/
function classifyIntent(query: string): Classification {
// Initialize mode scores
const scores: Record<string, number> = {
exact: 0,
fuzzy: 0,
semantic: 0,
graph: 0,
};
// Apply detection heuristics with weighted scoring
if (detectLiteral(query)) {
scores.exact += 0.8;
}
if (detectRegex(query)) {
scores.fuzzy += 0.7;
}
if (detectNaturalLanguage(query)) {
scores.semantic += 0.9;
}
if (detectFilePath(query)) {
scores.exact += 0.6;
}
if (detectRelationship(query)) {
scores.graph += 0.85;
}
// Find mode with highest confidence score
const mode = Object.keys(scores).reduce((a, b) => (scores[a] > scores[b] ? a : b));
const confidence = scores[mode];
// Build reasoning string
const detectedPatterns: string[] = [];
if (detectLiteral(query)) detectedPatterns.push('literal');
if (detectRegex(query)) detectedPatterns.push('regex');
if (detectNaturalLanguage(query)) detectedPatterns.push('natural language');
if (detectFilePath(query)) detectedPatterns.push('file path');
if (detectRelationship(query)) detectedPatterns.push('relationship');
const reasoning = `Query classified as ${mode} (confidence: ${confidence.toFixed(2)}, detected: ${detectedPatterns.join(', ')})`;
return { mode, confidence, reasoning };
}
/**
* Check if a tool is available in PATH
* @param toolName - Tool executable name
* @returns True if available
*/
function checkToolAvailability(toolName: string): boolean {
try {
const isWindows = process.platform === 'win32';
const command = isWindows ? 'where' : 'which';
execSync(`${command} ${toolName}`, { stdio: 'ignore' });
return true;
} catch {
return false;
}
}
/**
* Build ripgrep command arguments
* @param params - Search parameters
* @returns Command and arguments
*/
function buildRipgrepCommand(params: {
query: string;
paths: string[];
contextLines: number;
maxResults: number;
includeHidden: boolean;
}): { command: string; args: string[] } {
const { query, paths = ['.'], contextLines = 0, maxResults = 100, includeHidden = false } = params;
const args = [
'-n', // Show line numbers
'--color=never', // Disable color output
'--json', // Output in JSON format
];
// Add context lines if specified
if (contextLines > 0) {
args.push('-C', contextLines.toString());
}
// Add max results limit
if (maxResults > 0) {
args.push('--max-count', maxResults.toString());
}
// Include hidden files if specified
if (includeHidden) {
args.push('--hidden');
}
// Use literal/fixed string matching for exact mode
args.push('-F', query);
// Add search paths
args.push(...paths);
return { command: 'rg', args };
}
/**
* Mode: auto - Intent classification and mode selection
* Analyzes query to determine optimal search mode
*/
async function executeAutoMode(params: Params): Promise<SearchResult> {
const { query } = params;
// Classify intent
const classification = classifyIntent(query);
// Route to appropriate mode based on classification
switch (classification.mode) {
case 'exact': {
const exactResult = await executeExactMode(params);
return {
...exactResult,
metadata: {
...exactResult.metadata!,
classified_as: classification.mode,
confidence: classification.confidence,
reasoning: classification.reasoning,
},
};
}
case 'fuzzy':
return {
success: false,
error: 'Fuzzy mode not yet implemented',
metadata: {
mode: 'fuzzy',
backend: '',
count: 0,
query,
classified_as: classification.mode,
confidence: classification.confidence,
reasoning: classification.reasoning,
},
};
case 'semantic': {
const semanticResult = await executeSemanticMode(params);
return {
...semanticResult,
metadata: {
...semanticResult.metadata!,
classified_as: classification.mode,
confidence: classification.confidence,
reasoning: classification.reasoning,
},
};
}
case 'graph': {
const graphResult = await executeGraphMode(params);
return {
...graphResult,
metadata: {
...graphResult.metadata!,
classified_as: classification.mode,
confidence: classification.confidence,
reasoning: classification.reasoning,
},
};
}
default: {
const fallbackResult = await executeExactMode(params);
return {
...fallbackResult,
metadata: {
...fallbackResult.metadata!,
classified_as: 'exact',
confidence: 0.5,
reasoning: 'Fallback to exact mode due to unknown classification',
},
};
}
}
}
/**
* Mode: exact - Precise file path and content matching
* Uses ripgrep for literal string matching
*/
async function executeExactMode(params: Params): Promise<SearchResult> {
const { query, paths = [], contextLines = 0, maxResults = 100, includeHidden = false } = params;
// Check ripgrep availability
if (!checkToolAvailability('rg')) {
return {
success: false,
error: 'ripgrep not available - please install ripgrep (rg) to use exact search mode',
};
}
// Build ripgrep command
const { command, args } = buildRipgrepCommand({
query,
paths: paths.length > 0 ? paths : ['.'],
contextLines,
maxResults,
includeHidden,
});
return new Promise((resolve) => {
const child = spawn(command, args, {
cwd: process.cwd(),
stdio: ['ignore', 'pipe', 'pipe'],
});
let stdout = '';
let stderr = '';
child.stdout.on('data', (data) => {
stdout += data.toString();
});
child.stderr.on('data', (data) => {
stderr += data.toString();
});
child.on('close', (code) => {
const results: ExactMatch[] = [];
if (code === 0 || (code === 1 && stdout.trim())) {
const lines = stdout.split('\n').filter((line) => line.trim());
for (const line of lines) {
try {
const item = JSON.parse(line);
if (item.type === 'match') {
const match: ExactMatch = {
file: item.data.path.text,
line: item.data.line_number,
column:
item.data.submatches && item.data.submatches[0]
? item.data.submatches[0].start + 1
: 1,
content: item.data.lines.text.trim(),
};
results.push(match);
}
} catch {
continue;
}
}
resolve({
success: true,
results,
metadata: {
mode: 'exact',
backend: 'ripgrep',
count: results.length,
query,
},
});
} else {
resolve({
success: false,
error: `ripgrep execution failed with code ${code}: ${stderr}`,
results: [],
});
}
});
child.on('error', (error) => {
resolve({
success: false,
error: `Failed to spawn ripgrep: ${error.message}`,
results: [],
});
});
});
}
/**
* Mode: fuzzy - Approximate matching with tolerance
* Uses fuzzy matching algorithms for typo-tolerant search
*/
async function executeFuzzyMode(params: Params): Promise<SearchResult> {
return {
success: false,
error: 'Fuzzy mode not implemented - fuzzy matching engine pending',
};
}
/**
* Mode: semantic - Natural language understanding search
* Uses CodexLens embeddings for semantic similarity
*/
async function executeSemanticMode(params: Params): Promise<SearchResult> {
const { query, paths = [], maxResults = 100 } = params;
// Check CodexLens availability
const readyStatus = await ensureCodexLensReady();
if (!readyStatus.ready) {
return {
success: false,
error: `CodexLens not available: ${readyStatus.error}. Run 'ccw tool exec codex_lens {"action":"bootstrap"}' to install.`,
};
}
// Determine search path
const searchPath = paths.length > 0 ? paths[0] : '.';
// Execute CodexLens semantic search
const result = await executeCodexLens(['search', query, '--limit', maxResults.toString(), '--json'], {
cwd: searchPath,
});
if (!result.success) {
return {
success: false,
error: result.error,
metadata: {
mode: 'semantic',
backend: 'codexlens',
count: 0,
query,
},
};
}
// Parse and transform results
let results: SemanticMatch[] = [];
try {
const cleanOutput = result.output!.replace(/\r\n/g, '\n');
const parsed = JSON.parse(cleanOutput);
const data = parsed.result || parsed;
results = (data.results || []).map((item: any) => ({
file: item.path || item.file,
score: item.score || 0,
content: item.excerpt || item.content || '',
symbol: item.symbol || null,
}));
} catch {
return {
success: true,
results: [],
output: result.output,
metadata: {
mode: 'semantic',
backend: 'codexlens',
count: 0,
query,
warning: 'Failed to parse JSON output',
},
};
}
return {
success: true,
results,
metadata: {
mode: 'semantic',
backend: 'codexlens',
count: results.length,
query,
},
};
}
/**
* Mode: graph - Dependency and relationship traversal
* Uses CodexLens symbol extraction for code analysis
*/
async function executeGraphMode(params: Params): Promise<SearchResult> {
const { query, paths = [], maxResults = 100 } = params;
// Check CodexLens availability
const readyStatus = await ensureCodexLensReady();
if (!readyStatus.ready) {
return {
success: false,
error: `CodexLens not available: ${readyStatus.error}. Run 'ccw tool exec codex_lens {"action":"bootstrap"}' to install.`,
};
}
// First, search for relevant files using text search
const searchPath = paths.length > 0 ? paths[0] : '.';
const textResult = await executeCodexLens(['search', query, '--limit', maxResults.toString(), '--json'], {
cwd: searchPath,
});
if (!textResult.success) {
return {
success: false,
error: textResult.error,
metadata: {
mode: 'graph',
backend: 'codexlens',
count: 0,
query,
},
};
}
// Parse results and extract symbols from top files
let results: GraphMatch[] = [];
try {
const parsed = JSON.parse(textResult.output!);
const files = [...new Set((parsed.results || parsed).map((item: any) => item.path || item.file))].slice(
0,
10
);
// Extract symbols from files in parallel
const symbolPromises = files.map((file) =>
executeCodexLens(['symbol', file as string, '--json'], { cwd: searchPath }).then((result) => ({
file,
result,
}))
);
const symbolResults = await Promise.all(symbolPromises);
for (const { file, result } of symbolResults) {
if (result.success) {
try {
const symbols = JSON.parse(result.output!);
results.push({
file: file as string,
symbols: symbols.symbols || symbols,
relationships: [],
});
} catch {
// Skip files with parse errors
}
}
}
} catch {
return {
success: false,
error: 'Failed to parse search results',
metadata: {
mode: 'graph',
backend: 'codexlens',
count: 0,
query,
},
};
}
return {
success: true,
results,
metadata: {
mode: 'graph',
backend: 'codexlens',
count: results.length,
query,
note: 'Graph mode provides symbol extraction; full dependency graph analysis pending',
},
};
}
// Tool schema for MCP
export const schema: ToolSchema = {
name: 'smart_search',
description: `Intelligent code search with multiple modes.
Usage:
smart_search(query="function main", path=".") # Auto-select mode
smart_search(query="def init", mode="exact") # Exact match
smart_search(query="authentication logic", mode="semantic") # NL search
Modes: auto (default), exact, fuzzy, semantic, graph`,
inputSchema: {
type: 'object',
properties: {
query: {
type: 'string',
description: 'Search query (file pattern, text content, or natural language)',
},
mode: {
type: 'string',
enum: SEARCH_MODES,
description: 'Search mode (default: auto)',
default: 'auto',
},
paths: {
type: 'array',
description: 'Paths to search within (default: current directory)',
items: {
type: 'string',
},
default: [],
},
contextLines: {
type: 'number',
description: 'Number of context lines around matches (default: 0)',
default: 0,
},
maxResults: {
type: 'number',
description: 'Maximum number of results to return (default: 100)',
default: 100,
},
includeHidden: {
type: 'boolean',
description: 'Include hidden files/directories (default: false)',
default: false,
},
},
required: ['query'],
},
};
// Handler function
export async function handler(params: Record<string, unknown>): Promise<ToolResult<SearchResult>> {
const parsed = ParamsSchema.safeParse(params);
if (!parsed.success) {
return { success: false, error: `Invalid params: ${parsed.error.message}` };
}
const { mode } = parsed.data;
try {
let result: SearchResult;
switch (mode) {
case 'auto':
result = await executeAutoMode(parsed.data);
break;
case 'exact':
result = await executeExactMode(parsed.data);
break;
case 'fuzzy':
result = await executeFuzzyMode(parsed.data);
break;
case 'semantic':
result = await executeSemanticMode(parsed.data);
break;
case 'graph':
result = await executeGraphMode(parsed.data);
break;
default:
throw new Error(`Unsupported mode: ${mode}`);
}
return result.success ? { success: true, result } : { success: false, error: result.error };
} catch (error) {
return { success: false, error: (error as Error).message };
}
}