Add tests and documentation for CodexLens LSP tool

- Introduced a new test script for the CodexLens LSP tool to validate core functionalities including symbol search, find definition, find references, and get hover.
- Created comprehensive documentation for the MCP endpoint design, detailing the architecture, features, and integration with the CCW MCP Manager.
- Developed a detailed implementation plan for transitioning to a real LSP server, outlining phases, architecture, and acceptance criteria.
This commit is contained in:
catlog22
2026-01-19 23:26:35 +08:00
parent eeaefa7208
commit 3fe630f221
24 changed files with 3044 additions and 509 deletions

View File

@@ -1,515 +1,363 @@
# Pure Vector Search 实施总结
# CodexLens Real LSP Implementation - Summary
**实施日期**: 2025-12-16
**版本**: v0.5.0
**状态**: ✅ 完成并测试通过
> **Date**: 2026-01-19
> **Status**: Planning Complete, Implementation Ready
> **Focus**: Real LSP Server + VSCode Bridge Integration
---
## 📋 实施清单
## ✅ Completed Work
### ✅ 已完成项
### 1. Planning Documents
- [x] **核心功能实现**
- [x] 修改 `HybridSearchEngine` 添加 `pure_vector` 参数
- [x] 更新 `ChainSearchEngine` 支持 `pure_vector`
- [x] 更新 CLI 支持 `pure-vector` 模式
- [x] 添加参数验证和错误处理
#### a. Main Implementation Plan
**File**: `docs/REAL_LSP_SERVER_PLAN.md`
- [x] **工具脚本和CLI集成**
- [x] 创建向量嵌入生成脚本 (`scripts/generate_embeddings.py`)
- [x] 集成CLI命令 (`codexlens embeddings-generate`, `codexlens embeddings-status`)
- [x] 支持项目路径和索引文件路径
- [x] 支持多种嵌入模型选择
- [x] 添加进度显示和错误处理
- [x] 改进错误消息提示用户使用新CLI命令
**Content**:
- Complete architecture design for real LSP server
- 5-phase implementation plan
- Multi-language support strategy (TypeScript, Python, Go, Rust, Java, C/C++)
- Language server multiplexer design
- Position tolerance feature (cclsp-like)
- MCP integration layer
- [x] **测试验证**
- [x] 创建纯向量搜索测试套件 (`tests/test_pure_vector_search.py`)
- [x] 测试无嵌入场景(返回空列表)
- [x] 测试向量+FTS后备场景
- [x] 测试搜索模式对比
- [x] 所有测试通过 (5/5)
**Key Decisions**:
- Use `pygls` library for LSP implementation
- Support 6+ language servers via multiplexer
- Implement position tolerance for fuzzy AI-generated positions
- Three integration paths: Standalone LSP, VSCode Bridge, Index-based fallback
- [x] **文档**
- [x] 完整使用指南 (`PURE_VECTOR_SEARCH_GUIDE.md`)
- [x] API使用示例
- [x] 故障排除指南
- [x] 性能对比数据
#### b. VSCode Bridge Implementation (Appendix A)
**Included in**: `docs/REAL_LSP_SERVER_PLAN.md`
**Content**:
- HTTP-based VSCode extension bridge
- MCP tool integration (vscode_lsp)
- Complete architecture diagram
- API endpoint specifications
- Comparison with standalone LSP approach
### 2. VSCode Bridge Extension
#### Created Files:
1. **`ccw-vscode-bridge/package.json`**
- VSCode extension manifest
- Dependencies: @types/node, @types/vscode, typescript
2. **`ccw-vscode-bridge/tsconfig.json`**
- TypeScript compilation configuration
- Target: ES2020, CommonJS modules
3. **`ccw-vscode-bridge/src/extension.ts`**
- HTTP server on port 3457
- 4 API endpoints:
- `POST /get_definition`
- `POST /get_references`
- `POST /get_hover`
- `POST /get_document_symbols`
- VSCode API integration via `vscode.commands.executeCommand`
4. **`ccw-vscode-bridge/.vscodeignore`**
- Build artifact exclusion rules
5. **`ccw-vscode-bridge/README.md`**
- Installation & usage instructions
- API endpoint documentation
#### Features:
- ✅ Real-time VSCode LSP integration
- ✅ HTTP REST API for external tools
- ✅ CORS support
- ✅ Error handling
- ✅ Automatic VSCode feature detection
### 3. CCW MCP Tool
#### Created File:
**`ccw/src/tools/vscode-lsp.ts`**
**Features**:
- ✅ 4 LSP actions: get_definition, get_references, get_hover, get_document_symbols
- ✅ Zod schema validation
- ✅ HTTP client with timeout (10s)
- ✅ Connection retry logic
- ✅ Comprehensive error messages
**Parameters**:
- `action` (required): LSP action type
- `file_path` (required): Absolute file path
- `line` (optional): Line number (1-based)
- `character` (optional): Character position (1-based)
#### Integration:
**Modified File**: `ccw/src/tools/index.ts`
- ✅ Imported `vscodeLspMod`
- ✅ Registered tool via `registerTool(toLegacyTool(vscodeLspMod))`
- ✅ Available in MCP server tool list
---
## 🔧 技术变更
## 📋 Implementation Architecture
### 1. HybridSearchEngine 修改
### Three Integration Paths
**文件**: `codexlens/search/hybrid_search.py`
```
Path 1: VSCode Bridge (✅ Implemented)
─────────────────────────────────────
Claude Code → vscode_lsp MCP tool → HTTP → ccw-vscode-bridge → VSCode API → Language Servers
**变更内容**:
```python
def search(
self,
index_path: Path,
query: str,
limit: int = 20,
enable_fuzzy: bool = True,
enable_vector: bool = False,
pure_vector: bool = False, # ← 新增参数
) -> List[SearchResult]:
"""...
Args:
...
pure_vector: If True, only use vector search without FTS fallback
"""
backends = {}
Path 2: Standalone LSP Server (📝 Planned)
──────────────────────────────────────────
Any LSP Client → codexlens-lsp → Language Server Multiplexer → Language Servers
if pure_vector:
# 纯向量模式:只使用向量搜索
if enable_vector:
backends["vector"] = True
else:
# 无效配置警告
self.logger.warning(...)
backends["exact"] = True
else:
# 混合模式总是包含exact作为基线
backends["exact"] = True
if enable_fuzzy:
backends["fuzzy"] = True
if enable_vector:
backends["vector"] = True
Path 3: Index-Based (✅ Existing)
─────────────────────────────────
Claude Code → codex_lens_lsp → Python API → SQLite Index → Cached Results
```
**影响**:
- ✓ 向后兼容:`vector`模式行为不变vector + exact
- ✓ 新功能:`pure_vector=True`时仅使用向量搜索
- ✓ 错误处理无效配置时降级到exact搜索
### Smart Routing Strategy
### 2. ChainSearchEngine 修改
**文件**: `codexlens/search/chain_search.py`
**变更内容**:
```python
@dataclass
class SearchOptions:
"""...
Attributes:
...
pure_vector: If True, only use vector search without FTS fallback
"""
...
pure_vector: bool = False # ← 新增字段
def _search_single_index(
self,
...
pure_vector: bool = False, # ← 新增参数
...
):
"""...
Args:
...
pure_vector: If True, only use vector search without FTS fallback
"""
if hybrid_mode:
hybrid_engine = HybridSearchEngine(weights=hybrid_weights)
fts_results = hybrid_engine.search(
...
pure_vector=pure_vector, # ← 传递参数
)
```javascript
// Priority: VSCode Bridge → Standalone LSP → Index-based
if (vscodeBridgeAvailable) {
return useVSCodeBridge();
} else if (standaloneLSPAvailable) {
return useStandaloneLSP();
} else {
return useIndexBased();
}
```
**影响**:
-`SearchOptions`支持`pure_vector`配置
- ✓ 参数正确传递到底层`HybridSearchEngine`
- ✓ 多索引搜索时每个索引使用相同配置
### 3. CLI 命令修改
**文件**: `codexlens/cli/commands.py`
**变更内容**:
```python
@app.command()
def search(
...
mode: str = typer.Option(
"exact",
"--mode",
"-m",
help="Search mode: exact, fuzzy, hybrid, vector, pure-vector." # ← 更新帮助
),
...
):
"""...
Search Modes:
- exact: Exact FTS using unicode61 tokenizer (default)
- fuzzy: Fuzzy FTS using trigram tokenizer
- hybrid: RRF fusion of exact + fuzzy + vector (recommended)
- vector: Vector search with exact FTS fallback
- pure-vector: Pure semantic vector search only # ← 新增模式
Vector Search Requirements:
Vector search modes require pre-generated embeddings.
Use 'codexlens-embeddings generate' to create embeddings first.
"""
valid_modes = ["exact", "fuzzy", "hybrid", "vector", "pure-vector"] # ← 更新
# Map mode to options
...
elif mode == "pure-vector":
hybrid_mode, enable_fuzzy, enable_vector, pure_vector = True, False, True, True # ← 新增
...
options = SearchOptions(
...
pure_vector=pure_vector, # ← 传递参数
)
```
**影响**:
- ✓ CLI支持5种搜索模式
- ✓ 帮助文档清晰说明各模式差异
- ✓ 参数正确映射到`SearchOptions`
---
## 🧪 测试结果
## 🎯 Next Steps
### 测试套件test_pure_vector_search.py
### Immediate Actions (Phase 1)
1. **Test VSCode Bridge**
```bash
cd ccw-vscode-bridge
npm install
npm run compile
# Press F5 in VSCode to launch extension
```
2. **Test vscode_lsp Tool**
```bash
# Start CCW MCP server
cd ccw
npm run mcp
# Test via MCP client
{
"tool": "vscode_lsp",
"arguments": {
"action": "get_definition",
"file_path": "/path/to/file.ts",
"line": 10,
"character": 5
}
}
```
3. **Document Testing Results**
- Create test reports
- Benchmark latency
- Validate accuracy
### Medium-Term Goals (Phase 2-3)
1. **Implement Standalone LSP Server**
- Setup `codexlens-lsp` project structure
- Implement language server multiplexer
- Add core LSP handlers
2. **Add Position Tolerance**
- Implement fuzzy position matching
- Test with AI-generated positions
3. **Create Integration Tests**
- Unit tests for each component
- E2E tests with real language servers
- Performance benchmarks
### Long-Term Goals (Phase 4-5)
1. **MCP Context Enhancement**
- Integrate LSP results into MCP context
- Hook system for Claude Code
2. **Advanced Features**
- Code actions
- Formatting
- Rename support
3. **Production Deployment**
- Package VSCode extension to .vsix
- Publish to VS Code marketplace
- Create installation scripts
---
## 📊 Project Status Matrix
| Component | Status | Files | Tests | Docs |
|-----------|--------|-------|-------|------|
| VSCode Bridge Extension | ✅ Complete | 5/5 | ⏳ Pending | ✅ Complete |
| vscode_lsp MCP Tool | ✅ Complete | 1/1 | ⏳ Pending | ✅ Complete |
| Tool Registration | ✅ Complete | 1/1 | N/A | N/A |
| Planning Documents | ✅ Complete | 2/2 | N/A | ✅ Complete |
| Standalone LSP Server | 📝 Planned | 0/8 | 0/12 | ✅ Complete |
| Integration Tests | 📝 Planned | 0/3 | 0/15 | ⏳ Pending |
---
## 🔧 Development Environment
### Prerequisites
**For VSCode Bridge**:
- Node.js ≥ 18
- VSCode ≥ 1.80
- TypeScript ≥ 5.0
**For Standalone LSP**:
- Python ≥ 3.8
- pygls ≥ 1.3.0
- Language servers:
- TypeScript: `npm i -g typescript-language-server`
- Python: `pip install python-lsp-server`
- Go: `go install golang.org/x/tools/gopls@latest`
- Rust: `rustup component add rust-analyzer`
### Installation Commands
```bash
$ pytest tests/test_pure_vector_search.py -v
# VSCode Bridge
cd ccw-vscode-bridge
npm install
npm run compile
tests/test_pure_vector_search.py::TestPureVectorSearch
✓ test_pure_vector_without_embeddings PASSED
✓ test_vector_with_fallback PASSED
✓ test_pure_vector_invalid_config PASSED
✓ test_hybrid_mode_ignores_pure_vector PASSED
# CCW MCP (already setup)
cd ccw
npm install
tests/test_pure_vector_search.py::TestSearchModeComparison
✓ test_mode_comparison_without_embeddings PASSED
======================== 5 passed in 0.64s =========================
```
### 模式对比测试结果
```
Mode comparison (without embeddings):
exact: 1 results ← FTS精确匹配
fuzzy: 1 results ← FTS模糊匹配
vector: 1 results ← Vector模式回退到exact
pure_vector: 0 results ← Pure vector无嵌入时返回空 ✓ 预期行为
```
**关键验证**:
- ✅ 纯向量模式在无嵌入时正确返回空列表
- ✅ Vector模式保持向后兼容有FTS后备
- ✅ 所有模式参数映射正确
---
## 📊 性能影响
### 搜索延迟对比
基于测试数据100文件~500代码块无嵌入
| 模式 | 延迟 | 变化 |
|------|------|------|
| exact | 5.6ms | - (基线) |
| fuzzy | 7.7ms | +37% |
| vector (with fallback) | 7.4ms | +32% |
| **pure-vector (no embeddings)** | **2.1ms** | **-62%** ← 快速返回空 |
| hybrid | 9.0ms | +61% |
**分析**:
- ✓ Pure-vector模式在无嵌入时快速返回仅检查表存在性
- ✓ 有嵌入时pure-vector与vector性能相近~7ms
- ✓ 无额外性能开销
---
## 🚀 使用示例
### 命令行使用
```bash
# 1. 安装依赖
pip install codexlens[semantic]
# 2. 创建索引
codexlens init ~/projects/my-app
# 3. 生成嵌入
python scripts/generate_embeddings.py ~/.codexlens/indexes/my-app/_index.db
# 4. 使用纯向量搜索
codexlens search "how to authenticate users" --mode pure-vector
# 5. 使用向量搜索带FTS后备
codexlens search "authentication logic" --mode vector
# 6. 使用混合搜索(推荐)
codexlens search "user login" --mode hybrid
```
### Python API 使用
```python
from pathlib import Path
from codexlens.search.hybrid_search import HybridSearchEngine
engine = HybridSearchEngine()
# 纯向量搜索
results = engine.search(
index_path=Path("~/.codexlens/indexes/project/_index.db"),
query="verify user credentials",
enable_vector=True,
pure_vector=True, # ← 纯向量模式
)
# 向量搜索(带后备)
results = engine.search(
index_path=Path("~/.codexlens/indexes/project/_index.db"),
query="authentication",
enable_vector=True,
pure_vector=False, # ← 允许FTS后备
)
# Future: Standalone LSP
cd codex-lens
pip install -e ".[lsp]"
```
---
## 📝 文档创建
## 📖 Documentation Index
### 新增文档
1. **`PURE_VECTOR_SEARCH_GUIDE.md`** - 完整使用指南
- 快速开始教程
- 使用场景示例
- 故障排除指南
- API使用示例
- 技术细节说明
2. **`SEARCH_COMPARISON_ANALYSIS.md`** - 技术分析报告
- 问题诊断
- 架构分析
- 优化方案
- 实施路线图
3. **`SEARCH_ANALYSIS_SUMMARY.md`** - 快速总结
- 核心发现
- 快速修复步骤
- 下一步行动
4. **`IMPLEMENTATION_SUMMARY.md`** - 实施总结(本文档)
### 更新文档
- CLI帮助文档 (`codexlens search --help`)
- API文档字符串
- 测试文档注释
| Document | Purpose | Status |
|----------|---------|--------|
| `REAL_LSP_SERVER_PLAN.md` | Complete implementation plan | ✅ |
| `LSP_INTEGRATION_PLAN.md` | Original integration strategy | ✅ |
| `MCP_ENDPOINT_DESIGN.md` | MCP endpoint specifications | ✅ |
| `IMPLEMENTATION_SUMMARY.md` | This document | ✅ |
| `ccw-vscode-bridge/README.md` | Bridge usage guide | ✅ |
| `TESTING_GUIDE.md` | Testing procedures | ⏳ TODO |
| `DEPLOYMENT_GUIDE.md` | Production deployment | ⏳ TODO |
---
## 🔄 向后兼容性
## 💡 Key Design Decisions
### 保持兼容的设计决策
### 1. Why Three Integration Paths?
1. **默认值保持不变**
```python
def search(..., pure_vector: bool = False):
# 默认 False保持现有行为
- **VSCode Bridge**: Easiest setup, leverages VSCode's built-in language servers
- **Standalone LSP**: IDE-agnostic, works with any LSP client
- **Index-based**: Fallback for offline or cached queries
### 2. Why HTTP for VSCode Bridge?
- ✅ Simplest cross-process communication
- ✅ No complex IPC/socket management
- ✅ Easy to debug with curl/Postman
- ✅ CORS support for web-based tools
### 3. Why Port 3457?
- Unique port unlikely to conflict
- Easy to remember (345-7)
- Same approach as cclsp (uses stdio)
### 4. Why Not Modify smart_search?
User feedback:
> "第一种跟当前的符号搜索没区别哎"
> (Method 1 has no difference from current symbol search)
**Solution**: Implement real LSP server that connects to live language servers, not pre-indexed data.
---
## 🚀 Quick Start Guide
### Test VSCode Bridge Now
1. **Install Extension**:
```bash
cd ccw-vscode-bridge
npm install && npm run compile
code --install-extension .
```
2. **Vector模式行为不变**
```python
# 之前和之后行为相同
codexlens search "query" --mode vector
# → 总是返回结果vector + exact
2. **Reload VSCode**:
- Press `Cmd+Shift+P` (Mac) or `Ctrl+Shift+P` (Windows)
- Type "Reload Window"
3. **Verify Bridge is Running**:
```bash
curl http://localhost:3457/get_definition \
-X POST \
-H "Content-Type: application/json" \
-d '{"file_path":"/path/to/file.ts","line":10,"character":5}'
```
3. **新模式是可选的**
```python
# 用户可以继续使用现有模式
codexlens search "query" --mode exact
codexlens search "query" --mode hybrid
```
4. **API签名扩展**
```python
# 新参数是可选的,不破坏现有代码
engine.search(index_path, query) # ← 仍然有效
engine.search(index_path, query, pure_vector=True) # ← 新功能
4. **Test via CCW**:
```javascript
// In Claude Code or MCP client
await executeTool('vscode_lsp', {
action: 'get_definition',
file_path: '/absolute/path/to/file.ts',
line: 10,
character: 5
});
```
---
## 🐛 已知限制
## 📞 Support & Troubleshooting
### 当前限制
### Common Issues
1. **需要手动生成嵌入**
- 不会自动触发嵌入生成
- 需要运行独立脚本
**Issue**: "Could not connect to VSCode Bridge"
**Solution**:
1. Ensure VSCode is running
2. Check if extension is activated: `Cmd+Shift+P` → "CCW VSCode Bridge"
3. Verify port 3457 is not in use: `lsof -i :3457`
2. **无增量更新**
- 代码更新后需要完全重新生成嵌入
- 未来将支持增量更新
**Issue**: "No LSP server available"
**Solution**: Open the file in VSCode workspace first
3. **向量搜索比FTS慢**
- 约7ms vs 5ms单索引
- 可接受的折衷
### 缓解措施
- 文档清楚说明嵌入生成步骤
- 提供批量生成脚本
- 添加`--force`选项快速重新生成
**Issue**: "File not found"
**Solution**: Use absolute paths, not relative
---
## 🔮 后续优化计划
## 📝 Change Log
### ~~P1 - 短期1-2周~~ ✅ 已完成
- [x] ~~添加嵌入生成CLI命令~~ ✅
```bash
codexlens embeddings-generate /path/to/project
codexlens embeddings-generate /path/to/_index.db
```
- [x] ~~添加嵌入状态检查~~ ✅
```bash
codexlens embeddings-status # 检查所有索引
codexlens embeddings-status /path/to/project # 检查特定项目
```
- [x] ~~改进错误提示~~ ✅
- Pure-vector无嵌入时友好提示
- 指导用户如何生成嵌入
- 集成到搜索引擎日志中
### ❌ LLM语义增强功能已移除 (2025-12-16)
**移除原因**: 简化代码库,减少外部依赖
**已移除内容**:
- `src/codexlens/semantic/llm_enhancer.py` - LLM增强核心模块
- `src/codexlens/cli/commands.py` 中的 `enhance` 命令
- `tests/test_llm_enhancer.py` - LLM增强测试
- `tests/test_llm_enhanced_search.py` - LLM对比测试
- `scripts/compare_search_methods.py` - 对比测试脚本
- `scripts/test_misleading_comments.py` - 误导性注释测试
- `scripts/show_llm_analysis.py` - LLM分析展示脚本
- `scripts/inspect_llm_summaries.py` - LLM摘要检查工具
- `docs/LLM_ENHANCED_SEARCH_GUIDE.md` - LLM使用指南
- `docs/LLM_ENHANCEMENT_TEST_RESULTS.md` - LLM测试结果
- `docs/MISLEADING_COMMENTS_TEST_RESULTS.md` - 误导性注释测试结果
- `docs/CLI_INTEGRATION_SUMMARY.md` - CLI集成文档包含enhance命令
- `docs/DOCSTRING_LLM_HYBRID_DESIGN.md` - LLM混合策略设计
**保留功能**:
- ✅ 纯向量搜索 (pure_vector) 完整保留
- ✅ 语义嵌入生成 (`codexlens embeddings-generate`)
- ✅ 语义嵌入状态检查 (`codexlens embeddings-status`)
- ✅ 所有核心搜索功能
**历史记录**: LLM增强功能在测试中表现良好但为简化维护和减少外部依赖CCW CLI, Gemini/Qwen API而移除。设计文档DESIGN_EVALUATION_REPORT.md等保留作为历史参考。
### P2 - 中期1-2月
- [ ] 增量嵌入更新
- 检测文件变更
- 仅更新修改的文件
- [ ] 混合分块策略
- Symbol-based优先
- Sliding window补充
- [ ] 查询扩展
- 同义词展开
- 相关术语建议
### P3 - 长期3-6月
- [ ] FAISS集成
- 100x+搜索加速
- 大规模代码库支持
- [ ] 向量压缩
- PQ量化
- 减少50%存储空间
- [ ] 多模态搜索
- 代码 + 文档 + 注释统一搜索
### 2026-01-19 - Initial Implementation
- Created VSCode Bridge extension (5 files)
- Implemented vscode_lsp MCP tool
- Registered tool in CCW registry
- Completed planning documentation
- Added comprehensive architecture diagrams
---
## 📈 成功指标
### 功能指标
- ✅ 5种搜索模式全部工作
- ✅ 100%测试覆盖率
- ✅ 向后兼容性保持
- ✅ 文档完整且清晰
### 性能指标
- ✅ 纯向量延迟 < 10ms
- ✅ 混合搜索开销 < 2x
- ✅ 无嵌入时快速返回 (< 3ms)
### 用户体验指标
- ✅ CLI参数清晰直观
- ✅ 错误提示友好有用
- ✅ 文档易于理解
- ✅ API简单易用
---
## 🎯 总结
### 关键成就
1. **✅ 完成纯向量搜索功能**
- 3个核心组件修改
- 5个测试全部通过
- 完整文档和工具
2. **✅ 解决了初始问题**
- "Vector"模式语义不清晰 → 添加pure-vector模式
- 向量搜索返回空 → 提供嵌入生成工具
- 缺少使用指导 → 创建完整指南
3. **✅ 保持系统质量**
- 向后兼容
- 测试覆盖完整
- 性能影响可控
- 文档详尽
### 交付物
- ✅ 3个修改的源代码文件
- ✅ 1个嵌入生成脚本
- ✅ 1个测试套件5个测试
- ✅ 4个文档文件
### 下一步
1. **立即**用户可以开始使用pure-vector搜索
2. **短期**添加CLI嵌入管理命令
3. **中期**:实施增量更新和优化
4. **长期**高级特性FAISS、压缩、多模态
---
**实施完成!** 🎉
所有计划的功能已实现、测试并文档化。用户现在可以享受纯向量语义搜索的强大功能。
**Document End**