Remove deprecated issue management skills: issue-discover, issue-new, issue-plan, and issue-queue. These skills have been deleted to streamline the codebase and improve maintainability.

This commit is contained in:
catlog22
2026-02-07 15:28:31 +08:00
parent 514f97956e
commit 4ce4419ea6
56 changed files with 2769 additions and 9927 deletions

View File

@@ -0,0 +1,318 @@
# Phase 1: Explore & Plan
## Overview
Batch plan issue resolution using **issue-plan-agent** that combines exploration and planning into a single closed-loop workflow.
**Behavior:**
- Single solution per issue → auto-bind
- Multiple solutions → return for user selection
- Agent handles file generation
## Prerequisites
- Issue IDs provided (comma-separated) or `--all-pending` flag
- `ccw issue` CLI available
- `.workflow/issues/` directory exists or will be created
## Auto Mode
When `--yes` or `-y`: Auto-bind solutions without confirmation, use recommended settings.
## Core Guidelines
**Data Access Principle**: Issues and solutions files can grow very large. To avoid context overflow:
| Operation | Correct | Incorrect |
|-----------|---------|-----------|
| List issues (brief) | `ccw issue list --status pending --brief` | `Read('issues.jsonl')` |
| Read issue details | `ccw issue status <id> --json` | `Read('issues.jsonl')` |
| Update status | `ccw issue update <id> --status ...` | Direct file edit |
| Bind solution | `ccw issue bind <id> <sol-id>` | Direct file edit |
**Output Options**:
- `--brief`: JSON with minimal fields (id, title, status, priority, tags)
- `--json`: Full JSON (agent use only)
**Orchestration vs Execution**:
- **Command (orchestrator)**: Use `--brief` for minimal context
- **Agent (executor)**: Fetch full details → `ccw issue status <id> --json`
**ALWAYS** use CLI commands for CRUD operations. **NEVER** read entire `issues.jsonl` or `solutions/*.jsonl` directly.
## Execution Steps
### Step 1.1: Issue Loading (Brief Info Only)
```javascript
const batchSize = flags.batchSize || 3;
let issues = []; // {id, title, tags} - brief info for grouping only
// Default to --all-pending if no input provided
const useAllPending = flags.allPending || !userInput || userInput.trim() === '';
if (useAllPending) {
// Get pending issues with brief metadata via CLI
const result = Bash(`ccw issue list --status pending,registered --json`).trim();
const parsed = result ? JSON.parse(result) : [];
issues = parsed.map(i => ({ id: i.id, title: i.title || '', tags: i.tags || [] }));
if (issues.length === 0) {
console.log('No pending issues found.');
return;
}
console.log(`Found ${issues.length} pending issues`);
} else {
// Parse comma-separated issue IDs, fetch brief metadata
const ids = userInput.includes(',')
? userInput.split(',').map(s => s.trim())
: [userInput.trim()];
for (const id of ids) {
Bash(`ccw issue init ${id} --title "Issue ${id}" 2>/dev/null || true`);
const info = Bash(`ccw issue status ${id} --json`).trim();
const parsed = info ? JSON.parse(info) : {};
issues.push({ id, title: parsed.title || '', tags: parsed.tags || [] });
}
}
// Note: Agent fetches full issue content via `ccw issue status <id> --json`
// Intelligent grouping: Analyze issues by title/tags, group semantically similar ones
// Strategy: Same module/component, related bugs, feature clusters
// Constraint: Max ${batchSize} issues per batch
console.log(`Processing ${issues.length} issues in ${batches.length} batch(es)`);
update_plan({
explanation: "Issue loading complete, starting batch planning",
plan: batches.map((_, i) => ({
step: `Plan batch ${i+1}`,
status: 'pending'
}))
});
```
### Step 1.2: Unified Explore + Plan (issue-plan-agent) - PARALLEL
```javascript
Bash(`mkdir -p .workflow/issues/solutions`);
const pendingSelections = []; // Collect multi-solution issues for user selection
const agentResults = []; // Collect all agent results for conflict aggregation
// Build prompts for all batches
const agentTasks = batches.map((batch, batchIndex) => {
const issueList = batch.map(i => `- ${i.id}: ${i.title}${i.tags.length ? ` [${i.tags.join(', ')}]` : ''}`).join('\n');
const batchIds = batch.map(i => i.id);
const issuePrompt = `
## TASK ASSIGNMENT
### MANDATORY FIRST STEPS (Agent Execute)
1. **Read role definition**: ~/.codex/agents/issue-plan-agent.md (MUST read first)
2. Read: .workflow/project-tech.json
3. Read: .workflow/project-guidelines.json
---
## Plan Issues
**Issues** (grouped by similarity):
${issueList}
**Project Root**: ${process.cwd()}
### Project Context (MANDATORY)
1. Read: .workflow/project-tech.json (technology stack, architecture)
2. Read: .workflow/project-guidelines.json (constraints and conventions)
### Workflow
1. Fetch issue details: ccw issue status <id> --json
2. **Analyze failure history** (if issue.feedback exists):
- Extract failure details from issue.feedback (type='failure', stage='execute')
- Parse error_type, message, task_id, solution_id from content JSON
- Identify failure patterns: repeated errors, root causes, blockers
- **Constraint**: Avoid repeating failed approaches
3. Load project context files
4. Explore codebase (ACE semantic search)
5. Plan solution with tasks (schema: solution-schema.json)
- **If previous solution failed**: Reference failure analysis in solution.approach
- Add explicit verification steps to prevent same failure mode
6. **If github_url exists**: Add final task to comment on GitHub issue
7. Write solution to: .workflow/issues/solutions/{issue-id}.jsonl
8. **CRITICAL - Binding Decision**:
- Single solution → **MUST execute**: ccw issue bind <issue-id> <solution-id>
- Multiple solutions → Return pending_selection only (no bind)
### Failure-Aware Planning Rules
- **Extract failure patterns**: Parse issue.feedback where type='failure' and stage='execute'
- **Identify root causes**: Analyze error_type (test_failure, compilation, timeout, etc.)
- **Design alternative approach**: Create solution that addresses root cause
- **Add prevention steps**: Include explicit verification to catch same error earlier
- **Document lessons**: Reference previous failures in solution.approach
### Rules
- Solution ID format: SOL-{issue-id}-{uid} (uid: 4 random alphanumeric chars, e.g., a7x9)
- Single solution per issue → auto-bind via ccw issue bind
- Multiple solutions → register only, return pending_selection
- Tasks must have quantified acceptance.criteria
### Return Summary
{"bound":[{"issue_id":"...","solution_id":"...","task_count":N}],"pending_selection":[{"issue_id":"...","solutions":[{"id":"...","description":"...","task_count":N}]}]}
`;
return { batchIndex, batchIds, issuePrompt, batch };
});
// Launch agents in parallel (max 10 concurrent)
const MAX_PARALLEL = 10;
for (let i = 0; i < agentTasks.length; i += MAX_PARALLEL) {
const chunk = agentTasks.slice(i, i + MAX_PARALLEL);
const agentIds = [];
// Step 1: Spawn agents in parallel
for (const { batchIndex, batchIds, issuePrompt, batch } of chunk) {
updatePlanStep(`Plan batch ${batchIndex + 1}`, 'in_progress');
const agentId = spawn_agent({
message: issuePrompt
});
agentIds.push({ agentId, batchIndex });
}
console.log(`Launched ${agentIds.length} agents (chunk ${Math.floor(i/MAX_PARALLEL) + 1}/${Math.ceil(agentTasks.length/MAX_PARALLEL)})...`);
// Step 2: Batch wait for all agents in this chunk
const allIds = agentIds.map(a => a.agentId);
const waitResult = wait({
ids: allIds,
timeout_ms: 600000 // 10 minutes
});
if (waitResult.timed_out) {
console.log('Some agents timed out, continuing with completed results');
}
// Step 3: Collect results from completed agents
for (const { agentId, batchIndex } of agentIds) {
const agentStatus = waitResult.status[agentId];
if (!agentStatus || !agentStatus.completed) {
console.log(`Batch ${batchIndex + 1}: Agent did not complete, skipping`);
updatePlanStep(`Plan batch ${batchIndex + 1}`, 'completed');
continue;
}
const result = agentStatus.completed;
// Extract JSON from potential markdown code blocks (agent may wrap in ```json...```)
const jsonText = extractJsonFromMarkdown(result);
let summary;
try {
summary = JSON.parse(jsonText);
} catch (e) {
console.log(`Batch ${batchIndex + 1}: Failed to parse agent result, skipping`);
updatePlanStep(`Plan batch ${batchIndex + 1}`, 'completed');
continue;
}
agentResults.push(summary); // Store for conflict aggregation
// Verify binding for bound issues (agent should have executed bind)
for (const item of summary.bound || []) {
const status = JSON.parse(Bash(`ccw issue status ${item.issue_id} --json`).trim());
if (status.bound_solution_id === item.solution_id) {
console.log(`${item.issue_id}: ${item.solution_id} (${item.task_count} tasks)`);
} else {
// Fallback: agent failed to bind, execute here
Bash(`ccw issue bind ${item.issue_id} ${item.solution_id}`);
console.log(`${item.issue_id}: ${item.solution_id} (${item.task_count} tasks) [recovered]`);
}
}
// Collect pending selections
for (const pending of summary.pending_selection || []) {
pendingSelections.push(pending);
}
updatePlanStep(`Plan batch ${batchIndex + 1}`, 'completed');
}
// Step 4: Batch cleanup - close all agents in this chunk
allIds.forEach(id => close_agent({ id }));
}
```
### Step 1.3: Solution Selection (if pending)
```javascript
// Handle multi-solution issues
for (const pending of pendingSelections) {
if (pending.solutions.length === 0) continue;
const options = pending.solutions.slice(0, 4).map(sol => ({
label: `${sol.id} (${sol.task_count} tasks)`,
description: sol.description || sol.approach || 'No description'
}));
const answer = AskUserQuestion({
questions: [{
question: `Issue ${pending.issue_id}: which solution to bind?`,
header: pending.issue_id,
options: options,
multiSelect: false
}]
});
const selected = answer[Object.keys(answer)[0]];
if (!selected || selected === 'Other') continue;
const solId = selected.split(' ')[0];
Bash(`ccw issue bind ${pending.issue_id} ${solId}`);
console.log(`${pending.issue_id}: ${solId} bound`);
}
```
### Step 1.4: Summary
```javascript
// Count planned issues via CLI
const planned = JSON.parse(Bash(`ccw issue list --status planned --brief`) || '[]');
const plannedCount = planned.length;
console.log(`
## Done: ${issues.length} issues → ${plannedCount} planned
Next: \`/issue:queue\`\`/issue:execute\`
`);
```
## Error Handling
| Error | Resolution |
|-------|------------|
| Issue not found | Auto-create in issues.jsonl |
| ACE search fails | Agent falls back to ripgrep |
| No solutions generated | Display error, suggest manual planning |
| User cancels selection | Skip issue, continue with others |
| File conflicts | Agent detects and suggests resolution order |
## Bash Compatibility
**Avoid**: `$(cmd)`, `$var`, `for` loops — will be escaped incorrectly
**Use**: Simple commands + `&&` chains, quote comma params `"pending,registered"`
## Quality Checklist
Before completing, verify:
- [ ] All input issues have solutions in `solutions/{issue-id}.jsonl`
- [ ] Single solution issues are auto-bound (`bound_solution_id` set)
- [ ] Multi-solution issues returned in `pending_selection` for user choice
- [ ] Each solution has executable tasks with `modification_points`
- [ ] Task acceptance criteria are quantified (not vague)
- [ ] Conflicts detected and reported (if multiple issues touch same files)
- [ ] Issue status updated to `planned` after binding
- [ ] All spawned agents are properly closed via close_agent
## Post-Phase Update
After plan completion:
- All processed issues should have `status: planned` and `bound_solution_id` set
- Report: total issues processed, solutions bound, pending selections resolved
- Recommend next step: Form execution queue via Phase 4