Implement ANN index using HNSW algorithm and update related tests

- Added ANNIndex class for approximate nearest neighbor search using HNSW.
- Integrated ANN index with VectorStore for enhanced search capabilities.
- Updated test suite for ANN index, including tests for adding, searching, saving, and loading vectors.
- Modified existing tests to accommodate changes in search performance expectations.
- Improved error handling for file operations in tests to ensure compatibility with Windows file locks.
- Adjusted hybrid search performance assertions for increased stability in CI environments.
This commit is contained in:
catlog22
2025-12-19 10:35:29 +08:00
parent 9f6e6852da
commit 5e91ba6c60
15 changed files with 1463 additions and 172 deletions

View File

@@ -453,10 +453,10 @@ async function generateMemorySummary(memoryId) {
try {
showNotification(t('coreMemory.generatingSummary'), 'info');
const response = await fetch(`/api/core-memory/memories/${memoryId}/summary?path=${encodeURIComponent(projectPath)}`, {
const response = await fetch(`/api/core-memory/memories/${memoryId}/summary`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ tool: 'gemini' })
body: JSON.stringify({ tool: 'gemini', path: projectPath })
});
if (!response.ok) throw new Error(`HTTP ${response.status}`);