feat: add Chinese localization and new assets for CCW documentation

- Created LICENSE.txt for JavaScript assets including NProgress and React libraries.
- Added runtime JavaScript file for main functionality.
- Introduced new favicon and logo SVG assets for branding.
- Added comprehensive FAQ section in Chinese, covering CCW features, installation, workflows, AI model support, and troubleshooting.
This commit is contained in:
catlog22
2026-02-06 21:56:02 +08:00
parent 9b1655be9b
commit 6a5c17e42e
126 changed files with 3363 additions and 734 deletions

View File

@@ -0,0 +1,281 @@
---
name: issue-discover
description: Unified issue discovery and creation. Create issues from GitHub/text, discover issues via multi-perspective analysis, or prompt-driven iterative exploration. Triggers on "issue:new", "issue:discover", "issue:discover-by-prompt", "create issue", "discover issues", "find issues".
allowed-tools: Task, AskUserQuestion, TodoWrite, Read, Write, Edit, Bash, Glob, Grep, Skill, mcp__ace-tool__search_context, mcp__exa__search
---
# Issue Discover
Unified issue discovery and creation skill covering three entry points: manual issue creation, perspective-based discovery, and prompt-driven exploration.
## Architecture Overview
```
┌─────────────────────────────────────────────────────────────────┐
│ Issue Discover Orchestrator (SKILL.md) │
│ → Action selection → Route to phase → Execute → Summary │
└───────────────┬─────────────────────────────────────────────────┘
├─ AskUserQuestion: Select action
┌───────────┼───────────┬───────────┐
↓ ↓ ↓ │
┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ Phase 1 │ │ Phase 2 │ │ Phase 3 │ │
│ Create │ │Discover │ │Discover │ │
│ New │ │ Multi │ │by Prompt│ │
└─────────┘ └─────────┘ └─────────┘ │
↓ ↓ ↓ │
Issue Discoveries Discoveries │
(registered) (export) (export) │
│ │ │ │
└───────────┴───────────┘ │
↓ │
issue-resolve (plan/queue) │
↓ │
/issue:execute │
```
## Key Design Principles
1. **Action-Driven Routing**: AskUserQuestion selects action, then load single phase
2. **Progressive Phase Loading**: Only read the selected phase document
3. **CLI-First Data Access**: All issue CRUD via `ccw issue` CLI commands
4. **Auto Mode Support**: `-y` flag skips action selection with auto-detection
## Auto Mode
When `--yes` or `-y`: Skip action selection, auto-detect action from input type.
## Usage
```
Skill(skill="issue-discover", args="<input>")
Skill(skill="issue-discover", args="[FLAGS] \"<input>\"")
# Flags
-y, --yes Skip all confirmations (auto mode)
--action <type> Pre-select action: new|discover|discover-by-prompt
# Phase-specific flags
--priority <1-5> Issue priority (new mode)
--perspectives <list> Comma-separated perspectives (discover mode)
--external Enable Exa research (discover mode)
--scope <pattern> File scope (discover/discover-by-prompt mode)
--depth <level> standard|deep (discover-by-prompt mode)
--max-iterations <n> Max exploration iterations (discover-by-prompt mode)
# Examples
Skill(skill="issue-discover", args="https://github.com/org/repo/issues/42") # Create from GitHub
Skill(skill="issue-discover", args="\"Login fails with special chars\"") # Create from text
Skill(skill="issue-discover", args="--action discover src/auth/**") # Multi-perspective discovery
Skill(skill="issue-discover", args="--action discover src/api/** --perspectives=security,bug") # Focused discovery
Skill(skill="issue-discover", args="--action discover-by-prompt \"Check API contracts\"") # Prompt-driven discovery
Skill(skill="issue-discover", args="-y \"auth broken\"") # Auto mode create
```
## Execution Flow
```
Input Parsing:
└─ Parse flags (--action, -y, --perspectives, etc.) and positional args
Action Selection:
├─ --action flag provided → Route directly
├─ Auto-detect from input:
│ ├─ GitHub URL or #number → Create New (Phase 1)
│ ├─ Path pattern (src/**, *.ts) → Discover (Phase 2)
│ ├─ Short text (< 80 chars) → Create New (Phase 1)
│ └─ Long descriptive text (≥ 80 chars) → Discover by Prompt (Phase 3)
└─ Otherwise → AskUserQuestion to select action
Phase Execution (load one phase):
├─ Phase 1: Create New → phases/01-issue-new.md
├─ Phase 2: Discover → phases/02-discover.md
└─ Phase 3: Discover by Prompt → phases/03-discover-by-prompt.md
Post-Phase:
└─ Summary + Next steps recommendation
```
### Phase Reference Documents
| Phase | Document | Load When | Purpose |
|-------|----------|-----------|---------|
| Phase 1 | [phases/01-issue-new.md](phases/01-issue-new.md) | Action = Create New | Create issue from GitHub URL or text description |
| Phase 2 | [phases/02-discover.md](phases/02-discover.md) | Action = Discover | Multi-perspective issue discovery (bug, security, test, etc.) |
| Phase 3 | [phases/03-discover-by-prompt.md](phases/03-discover-by-prompt.md) | Action = Discover by Prompt | Prompt-driven iterative exploration with Gemini planning |
## Core Rules
1. **Action Selection First**: Always determine action before loading any phase
2. **Single Phase Load**: Only read the selected phase document, never load all phases
3. **CLI Data Access**: Use `ccw issue` CLI for all issue operations, NEVER read files directly
4. **Content Preservation**: Each phase contains complete execution logic from original commands
5. **Auto-Detect Input**: Smart input parsing reduces need for explicit --action flag
## Input Processing
### Auto-Detection Logic
```javascript
function detectAction(input, flags) {
// 1. Explicit --action flag
if (flags.action) return flags.action;
const trimmed = input.trim();
// 2. GitHub URL → new
if (trimmed.match(/github\.com\/[\w-]+\/[\w-]+\/issues\/\d+/) || trimmed.match(/^#\d+$/)) {
return 'new';
}
// 3. Path pattern (contains **, /, or --perspectives) → discover
if (trimmed.match(/\*\*/) || trimmed.match(/^src\//) || flags.perspectives) {
return 'discover';
}
// 4. Short text (< 80 chars, no special patterns) → new
if (trimmed.length > 0 && trimmed.length < 80 && !trimmed.includes('--')) {
return 'new';
}
// 5. Long descriptive text → discover-by-prompt
if (trimmed.length >= 80) {
return 'discover-by-prompt';
}
// Cannot auto-detect → ask user
return null;
}
```
### Action Selection (AskUserQuestion)
```javascript
// When action cannot be auto-detected
const answer = AskUserQuestion({
questions: [{
question: "What would you like to do?",
header: "Action",
multiSelect: false,
options: [
{
label: "Create New Issue (Recommended)",
description: "Create issue from GitHub URL, text description, or structured input"
},
{
label: "Discover Issues",
description: "Multi-perspective discovery: bug, security, test, quality, performance, etc."
},
{
label: "Discover by Prompt",
description: "Describe what to find — Gemini plans the exploration strategy iteratively"
}
]
}]
});
// Route based on selection
const actionMap = {
"Create New Issue": "new",
"Discover Issues": "discover",
"Discover by Prompt": "discover-by-prompt"
};
```
## Data Flow
```
User Input (URL / text / path pattern / descriptive prompt)
[Parse Flags + Auto-Detect Action]
[Action Selection] ← AskUserQuestion (if needed)
[Read Selected Phase Document]
[Execute Phase Logic]
[Summary + Next Steps]
├─ After Create → Suggest issue-resolve (plan solution)
└─ After Discover → Suggest export to issues, then issue-resolve
```
## TodoWrite Pattern
```json
[
{"content": "Select action", "status": "completed"},
{"content": "Execute: [selected phase name]", "status": "in_progress"},
{"content": "Summary & next steps", "status": "pending"}
]
```
Phase-specific sub-tasks are attached when the phase executes (see individual phase docs for details).
## Core Guidelines
**Data Access Principle**: Issues files can grow very large. To avoid context overflow:
| Operation | Correct | Incorrect |
|-----------|---------|-----------|
| List issues (brief) | `ccw issue list --status pending --brief` | `Read('issues.jsonl')` |
| Read issue details | `ccw issue status <id> --json` | `Read('issues.jsonl')` |
| Create issue | `echo '...' \| ccw issue create` | Direct file write |
| Update status | `ccw issue update <id> --status ...` | Direct file edit |
**ALWAYS** use CLI commands for CRUD operations. **NEVER** read entire `issues.jsonl` directly.
## Error Handling
| Error | Resolution |
|-------|------------|
| No action detected | Show AskUserQuestion with all 3 options |
| Invalid action type | Show available actions, re-prompt |
| Phase execution fails | Report error, suggest manual intervention |
| No files matched (discover) | Check target pattern, verify path exists |
| Gemini planning failed (discover-by-prompt) | Retry with qwen fallback |
## Post-Phase Next Steps
After successful phase execution, recommend next action:
```javascript
// After Create New (issue created)
AskUserQuestion({
questions: [{
question: "Issue created. What next?",
header: "Next",
multiSelect: false,
options: [
{ label: "Plan Solution", description: "Generate solution via issue-resolve" },
{ label: "Create Another", description: "Create more issues" },
{ label: "View Issues", description: "Review all issues" },
{ label: "Done", description: "Exit workflow" }
]
}]
});
// After Discover / Discover by Prompt (discoveries generated)
AskUserQuestion({
questions: [{
question: "Discovery complete. What next?",
header: "Next",
multiSelect: false,
options: [
{ label: "Export to Issues", description: "Convert discoveries to issues" },
{ label: "Plan Solutions", description: "Plan solutions for exported issues via issue-resolve" },
{ label: "Done", description: "Exit workflow" }
]
}]
});
```
## Related Skills & Commands
- `issue-resolve` - Plan solutions, convert artifacts, form queues, from brainstorm
- `issue-manage` - Interactive issue CRUD operations
- `/issue:execute` - Execute queue with DAG-based parallel orchestration
- `ccw issue list` - List all issues
- `ccw issue status <id>` - View issue details

View File

@@ -0,0 +1,348 @@
# Phase 1: Create New Issue
> 来源: `commands/issue/new.md`
## Overview
Create structured issue from GitHub URL or text description with clarity-based flow control.
**Core workflow**: Input Analysis → Clarity Detection → Data Extraction → Optional Clarification → GitHub Publishing → Create Issue
**Input sources**:
- **GitHub URL** - `https://github.com/owner/repo/issues/123` or `#123`
- **Structured text** - Text with expected/actual/affects keywords
- **Vague text** - Short description that needs clarification
**Output**:
- **Issue** (GH-xxx or ISS-YYYYMMDD-HHMMSS) - Registered issue ready for planning
## Prerequisites
- `gh` CLI available (for GitHub URLs)
- `ccw issue` CLI available
## Auto Mode
When `--yes` or `-y`: Skip clarification questions, create issue with inferred details.
## Arguments
| Argument | Required | Type | Default | Description |
|----------|----------|------|---------|-------------|
| input | Yes | String | - | GitHub URL, `#number`, or text description |
| --priority | No | Integer | auto | Priority 1-5 (auto-inferred if omitted) |
| -y, --yes | No | Flag | false | Skip all confirmations |
## Issue Structure
```typescript
interface Issue {
id: string; // GH-123 or ISS-YYYYMMDD-HHMMSS
title: string;
status: 'registered' | 'planned' | 'queued' | 'in_progress' | 'completed' | 'failed';
priority: number; // 1 (critical) to 5 (low)
context: string; // Problem description (single source of truth)
source: 'github' | 'text' | 'discovery';
source_url?: string;
labels?: string[];
// GitHub binding (for non-GitHub sources that publish to GitHub)
github_url?: string;
github_number?: number;
// Optional structured fields
expected_behavior?: string;
actual_behavior?: string;
affected_components?: string[];
// Feedback history
feedback?: {
type: 'failure' | 'clarification' | 'rejection';
stage: string;
content: string;
created_at: string;
}[];
bound_solution_id: string | null;
created_at: string;
updated_at: string;
}
```
## Execution Steps
### Step 1.1: Input Analysis & Clarity Detection
```javascript
const input = userInput.trim();
const flags = parseFlags(userInput);
// Detect input type and clarity
const isGitHubUrl = input.match(/github\.com\/[\w-]+\/[\w-]+\/issues\/\d+/);
const isGitHubShort = input.match(/^#(\d+)$/);
const hasStructure = input.match(/(expected|actual|affects|steps):/i);
// Clarity score: 0-3
let clarityScore = 0;
if (isGitHubUrl || isGitHubShort) clarityScore = 3; // GitHub = fully clear
else if (hasStructure) clarityScore = 2; // Structured text = clear
else if (input.length > 50) clarityScore = 1; // Long text = somewhat clear
else clarityScore = 0; // Vague
let issueData = {};
```
### Step 1.2: Data Extraction (GitHub or Text)
```javascript
if (isGitHubUrl || isGitHubShort) {
// GitHub - fetch via gh CLI
const result = Bash(`gh issue view ${extractIssueRef(input)} --json number,title,body,labels,url`);
const gh = JSON.parse(result);
issueData = {
id: `GH-${gh.number}`,
title: gh.title,
source: 'github',
source_url: gh.url,
labels: gh.labels.map(l => l.name),
context: gh.body?.substring(0, 500) || gh.title,
...parseMarkdownBody(gh.body)
};
} else {
// Text description
issueData = {
id: `ISS-${new Date().toISOString().replace(/[-:T]/g, '').slice(0, 14)}`,
source: 'text',
...parseTextDescription(input)
};
}
```
### Step 1.3: Lightweight Context Hint (Conditional)
```javascript
// ACE search ONLY for medium clarity (1-2) AND missing components
// Skip for: GitHub (has context), vague (needs clarification first)
if (clarityScore >= 1 && clarityScore <= 2 && !issueData.affected_components?.length) {
const keywords = extractKeywords(issueData.context);
if (keywords.length >= 2) {
try {
const aceResult = mcp__ace-tool__search_context({
project_root_path: process.cwd(),
query: keywords.slice(0, 3).join(' ')
});
issueData.affected_components = aceResult.files?.slice(0, 3) || [];
} catch {
// ACE failure is non-blocking
}
}
}
```
### Step 1.4: Conditional Clarification (Only if Unclear)
```javascript
// ONLY ask questions if clarity is low
if (clarityScore < 2 && (!issueData.context || issueData.context.length < 20)) {
const answer = AskUserQuestion({
questions: [{
question: 'Please describe the issue in more detail:',
header: 'Clarify',
multiSelect: false,
options: [
{ label: 'Provide details', description: 'Describe what, where, and expected behavior' }
]
}]
});
if (answer.customText) {
issueData.context = answer.customText;
issueData.title = answer.customText.split(/[.\n]/)[0].substring(0, 60);
issueData.feedback = [{
type: 'clarification',
stage: 'new',
content: answer.customText,
created_at: new Date().toISOString()
}];
}
}
```
### Step 1.5: GitHub Publishing Decision (Non-GitHub Sources)
```javascript
// For non-GitHub sources, ask if user wants to publish to GitHub
let publishToGitHub = false;
if (issueData.source !== 'github') {
const publishAnswer = AskUserQuestion({
questions: [{
question: 'Would you like to publish this issue to GitHub?',
header: 'Publish',
multiSelect: false,
options: [
{ label: 'Yes, publish to GitHub', description: 'Create issue on GitHub and link it' },
{ label: 'No, keep local only', description: 'Store as local issue without GitHub sync' }
]
}]
});
publishToGitHub = publishAnswer.answers?.['Publish']?.includes('Yes');
}
```
### Step 1.6: Create Issue
**Issue Creation** (via CLI endpoint):
```bash
# Option 1: Pipe input (recommended for complex JSON)
echo '{"title":"...", "context":"...", "priority":3}' | ccw issue create
# Option 2: Heredoc (for multi-line JSON)
ccw issue create << 'EOF'
{"title":"...", "context":"含\"引号\"的内容", "priority":3}
EOF
```
**GitHub Publishing** (if user opted in):
```javascript
// Step 1: Create local issue FIRST
const localIssue = createLocalIssue(issueData); // ccw issue create
// Step 2: Publish to GitHub if requested
if (publishToGitHub) {
const ghResult = Bash(`gh issue create --title "${issueData.title}" --body "${issueData.context}"`);
const ghUrl = ghResult.match(/https:\/\/github\.com\/[\w-]+\/[\w-]+\/issues\/\d+/)?.[0];
const ghNumber = parseInt(ghUrl?.match(/\/issues\/(\d+)/)?.[1]);
if (ghNumber) {
Bash(`ccw issue update ${localIssue.id} --github-url "${ghUrl}" --github-number ${ghNumber}`);
}
}
```
**Workflow:**
```
1. Create local issue (ISS-YYYYMMDD-NNN) → stored in .workflow/issues.jsonl
2. If publishToGitHub:
a. gh issue create → returns GitHub URL
b. Update local issue with github_url + github_number binding
3. Both local and GitHub issues exist, linked together
```
## Execution Flow
```
Phase 1: Input Analysis
└─ Detect clarity score (GitHub URL? Structured text? Keywords?)
Phase 2: Data Extraction (branched by clarity)
┌────────────┬─────────────────┬──────────────┐
│ Score 3 │ Score 1-2 │ Score 0 │
│ GitHub │ Text + ACE │ Vague │
├────────────┼─────────────────┼──────────────┤
│ gh CLI │ Parse struct │ AskQuestion │
│ → parse │ + quick hint │ (1 question) │
│ │ (3 files max) │ → feedback │
└────────────┴─────────────────┴──────────────┘
Phase 3: GitHub Publishing Decision (non-GitHub only)
├─ Source = github: Skip (already from GitHub)
└─ Source ≠ github: AskUserQuestion
├─ Yes → publishToGitHub = true
└─ No → publishToGitHub = false
Phase 4: Create Issue
├─ Score ≥ 2: Direct creation
└─ Score < 2: Confirm first → Create
└─ If publishToGitHub: gh issue create → link URL
Note: Deep exploration & lifecycle deferred to /issue:plan
```
## Helper Functions
```javascript
function extractKeywords(text) {
const stopWords = new Set(['the', 'a', 'an', 'is', 'are', 'was', 'were', 'not', 'with']);
return text
.toLowerCase()
.split(/\W+/)
.filter(w => w.length > 3 && !stopWords.has(w))
.slice(0, 5);
}
function parseTextDescription(text) {
const result = { title: '', context: '' };
const sentences = text.split(/\.(?=\s|$)/);
result.title = sentences[0]?.trim().substring(0, 60) || 'Untitled';
result.context = text.substring(0, 500);
const expected = text.match(/expected:?\s*([^.]+)/i);
const actual = text.match(/actual:?\s*([^.]+)/i);
const affects = text.match(/affects?:?\s*([^.]+)/i);
if (expected) result.expected_behavior = expected[1].trim();
if (actual) result.actual_behavior = actual[1].trim();
if (affects) {
result.affected_components = affects[1].split(/[,\s]+/).filter(c => c.includes('/') || c.includes('.'));
}
return result;
}
function parseMarkdownBody(body) {
if (!body) return {};
const result = {};
const problem = body.match(/##?\s*(problem|description)[:\s]*([\s\S]*?)(?=##|$)/i);
const expected = body.match(/##?\s*expected[:\s]*([\s\S]*?)(?=##|$)/i);
const actual = body.match(/##?\s*actual[:\s]*([\s\S]*?)(?=##|$)/i);
if (problem) result.context = problem[2].trim().substring(0, 500);
if (expected) result.expected_behavior = expected[2].trim();
if (actual) result.actual_behavior = actual[2].trim();
return result;
}
```
## Error Handling
| Error | Message | Resolution |
|-------|---------|------------|
| GitHub fetch failed | gh CLI error | Check gh auth, verify URL |
| Clarity too low | Input unclear | Ask clarification question |
| Issue creation failed | CLI error | Verify ccw issue endpoint |
| GitHub publish failed | gh issue create error | Create local-only, skip GitHub |
## Examples
### Clear Input (No Questions)
```bash
Skill(skill="issue-lifecycle", args="https://github.com/org/repo/issues/42")
# → Fetches, parses, creates immediately
Skill(skill="issue-lifecycle", args="\"Login fails with special chars. Expected: success. Actual: 500\"")
# → Parses structure, creates immediately
```
### Vague Input (1 Question)
```bash
Skill(skill="issue-lifecycle", args="\"auth broken\"")
# → Asks: "Please describe the issue in more detail"
# → User provides details → saved to feedback[]
# → Creates issue
```
## Post-Phase Update
After issue creation:
- Issue created with `status: registered`
- Report: issue ID, title, source, affected components
- Show GitHub URL (if published)
- Recommend next step: `/issue:plan <id>` or `Skill(skill="issue-resolve", args="<id>")`

View File

@@ -0,0 +1,337 @@
# Phase 2: Discover Issues (Multi-Perspective)
> 来源: `commands/issue/discover.md`
## Overview
Multi-perspective issue discovery orchestrator that explores code from different angles to identify potential bugs, UX improvements, test gaps, and other actionable items.
**Core workflow**: Initialize → Select Perspectives → Parallel Analysis → Aggregate → Generate Issues → User Action
**Discovery Scope**: Specified modules/files only
**Output Directory**: `.workflow/issues/discoveries/{discovery-id}/`
**Available Perspectives**: bug, ux, test, quality, security, performance, maintainability, best-practices
**Exa Integration**: Auto-enabled for security and best-practices perspectives
**CLI Tools**: Gemini → Qwen → Codex (fallback chain)
## Prerequisites
- Target file/module pattern (e.g., `src/auth/**`)
- `ccw issue` CLI available
## Auto Mode
When `--yes` or `-y`: Auto-select all perspectives, skip confirmations.
## Arguments
| Argument | Required | Type | Default | Description |
|----------|----------|------|---------|-------------|
| target | Yes | String | - | File/module glob pattern (e.g., `src/auth/**`) |
| --perspectives | No | String | interactive | Comma-separated: bug,ux,test,quality,security,performance,maintainability,best-practices |
| --external | No | Flag | false | Enable Exa research for all perspectives |
| -y, --yes | No | Flag | false | Skip all confirmations |
## Perspectives
| Perspective | Focus | Categories | Exa |
|-------------|-------|------------|-----|
| **bug** | Potential Bugs | edge-case, null-check, resource-leak, race-condition, boundary, exception-handling | - |
| **ux** | User Experience | error-message, loading-state, feedback, accessibility, interaction, consistency | - |
| **test** | Test Coverage | missing-test, edge-case-test, integration-gap, coverage-hole, assertion-quality | - |
| **quality** | Code Quality | complexity, duplication, naming, documentation, code-smell, readability | - |
| **security** | Security Issues | injection, auth, encryption, input-validation, data-exposure, access-control | ✓ |
| **performance** | Performance | n-plus-one, memory-usage, caching, algorithm, blocking-operation, resource | - |
| **maintainability** | Maintainability | coupling, cohesion, tech-debt, extensibility, module-boundary, interface-design | - |
| **best-practices** | Best Practices | convention, pattern, framework-usage, anti-pattern, industry-standard | ✓ |
## Execution Steps
### Step 2.1: Discovery & Initialization
```javascript
// Parse target pattern and resolve files
const resolvedFiles = await expandGlobPattern(targetPattern);
if (resolvedFiles.length === 0) {
throw new Error(`No files matched pattern: ${targetPattern}`);
}
// Generate discovery ID
const discoveryId = `DSC-${formatDate(new Date(), 'YYYYMMDD-HHmmss')}`;
// Create output directory
const outputDir = `.workflow/issues/discoveries/${discoveryId}`;
await mkdir(outputDir, { recursive: true });
await mkdir(`${outputDir}/perspectives`, { recursive: true });
// Initialize unified discovery state
await writeJson(`${outputDir}/discovery-state.json`, {
discovery_id: discoveryId,
target_pattern: targetPattern,
phase: "initialization",
created_at: new Date().toISOString(),
updated_at: new Date().toISOString(),
target: { files_count: { total: resolvedFiles.length }, project: {} },
perspectives: [],
external_research: { enabled: false, completed: false },
results: { total_findings: 0, issues_generated: 0, priority_distribution: {} }
});
```
### Step 2.2: Interactive Perspective Selection
```javascript
let selectedPerspectives = [];
if (args.perspectives) {
selectedPerspectives = args.perspectives.split(',').map(p => p.trim());
} else {
// Interactive selection via AskUserQuestion
const response = AskUserQuestion({
questions: [{
question: "Select primary discovery focus:",
header: "Focus",
multiSelect: false,
options: [
{ label: "Bug + Test + Quality", description: "Quick scan: potential bugs, test gaps, code quality (Recommended)" },
{ label: "Security + Performance", description: "System audit: security issues, performance bottlenecks" },
{ label: "Maintainability + Best-practices", description: "Long-term health: coupling, tech debt, conventions" },
{ label: "Full analysis", description: "All 8 perspectives (comprehensive, takes longer)" }
]
}]
});
selectedPerspectives = parseSelectedPerspectives(response);
}
```
### Step 2.3: Parallel Perspective Analysis
Launch N agents in parallel (one per selected perspective):
```javascript
const agentPromises = selectedPerspectives.map(perspective =>
Task({
subagent_type: "cli-explore-agent",
run_in_background: false,
description: `Discover ${perspective} issues`,
prompt: buildPerspectivePrompt(perspective, discoveryId, resolvedFiles, outputDir)
})
);
const results = await Promise.all(agentPromises);
```
### Step 2.4: Aggregation & Prioritization
```javascript
// Load all perspective JSON files written by agents
const allFindings = [];
for (const perspective of selectedPerspectives) {
const jsonPath = `${outputDir}/perspectives/${perspective}.json`;
if (await fileExists(jsonPath)) {
const data = await readJson(jsonPath);
allFindings.push(...data.findings.map(f => ({ ...f, perspective })));
}
}
// Deduplicate and prioritize
const prioritizedFindings = deduplicateAndPrioritize(allFindings);
```
### Step 2.5: Issue Generation & Summary
```javascript
// Convert high-priority findings to issues
const issueWorthy = prioritizedFindings.filter(f =>
f.priority === 'critical' || f.priority === 'high' || f.priority_score >= 0.7
);
// Write discovery-issues.jsonl
await writeJsonl(`${outputDir}/discovery-issues.jsonl`, issues);
// Generate summary from agent returns
await writeSummaryFromAgentReturns(outputDir, results, prioritizedFindings, issues);
// Update final state
await updateDiscoveryState(outputDir, {
phase: 'complete',
updated_at: new Date().toISOString(),
'results.issues_generated': issues.length
});
```
### Step 2.6: User Action Prompt
```javascript
const hasHighPriority = issues.some(i => i.priority === 'critical' || i.priority === 'high');
await AskUserQuestion({
questions: [{
question: `Discovery complete: ${issues.length} issues generated, ${prioritizedFindings.length} total findings. What next?`,
header: "Next Step",
multiSelect: false,
options: hasHighPriority ? [
{ label: "Export to Issues (Recommended)", description: `${issues.length} high-priority issues found - export to tracker` },
{ label: "Open Dashboard", description: "Review findings in ccw view before exporting" },
{ label: "Skip", description: "Complete discovery without exporting" }
] : [
{ label: "Open Dashboard (Recommended)", description: "Review findings in ccw view to decide which to export" },
{ label: "Export to Issues", description: `Export ${issues.length} issues to tracker` },
{ label: "Skip", description: "Complete discovery without exporting" }
]
}]
});
if (response === "Export to Issues") {
await appendJsonl('.workflow/issues/issues.jsonl', issues);
}
```
## Agent Invocation Template
### Perspective Analysis Agent
```javascript
Task({
subagent_type: "cli-explore-agent",
run_in_background: false,
description: `Discover ${perspective} issues`,
prompt: `
## Task Objective
Discover potential ${perspective} issues in specified module files.
## Discovery Context
- Discovery ID: ${discoveryId}
- Perspective: ${perspective}
- Target Pattern: ${targetPattern}
- Resolved Files: ${resolvedFiles.length} files
- Output Directory: ${outputDir}
## MANDATORY FIRST STEPS
1. Read discovery state: ${outputDir}/discovery-state.json
2. Read schema: ~/.claude/workflows/cli-templates/schemas/discovery-finding-schema.json
3. Analyze target files for ${perspective} concerns
## Output Requirements
**1. Write JSON file**: ${outputDir}/perspectives/${perspective}.json
- Follow discovery-finding-schema.json exactly
- Each finding: id, title, priority, category, description, file, line, snippet, suggested_issue, confidence
**2. Return summary** (DO NOT write report file):
- Total findings, priority breakdown, key issues
## Perspective-Specific Guidance
${getPerspectiveGuidance(perspective)}
## Success Criteria
- [ ] JSON written to ${outputDir}/perspectives/${perspective}.json
- [ ] Summary returned with findings count and key issues
- [ ] Each finding includes actionable suggested_issue
- [ ] Priority uses lowercase enum: critical/high/medium/low
`
})
```
### Exa Research Agent (for security and best-practices)
```javascript
Task({
subagent_type: "cli-explore-agent",
run_in_background: false,
description: `External research for ${perspective} via Exa`,
prompt: `
## Task Objective
Research industry best practices for ${perspective} using Exa search
## Research Steps
1. Read project tech stack: .workflow/project-tech.json
2. Use Exa to search for best practices
3. Synthesize findings relevant to this project
## Output Requirements
**1. Write JSON file**: ${outputDir}/external-research.json
**2. Return summary** (DO NOT write report file)
## Success Criteria
- [ ] JSON written to ${outputDir}/external-research.json
- [ ] Findings are relevant to project's tech stack
`
})
```
## Perspective Guidance Reference
```javascript
function getPerspectiveGuidance(perspective) {
const guidance = {
bug: `Focus: Null checks, edge cases, resource leaks, race conditions, boundary conditions, exception handling
Priority: Critical=data corruption/crash, High=malfunction, Medium=edge case issues, Low=minor`,
ux: `Focus: Error messages, loading states, feedback, accessibility, interaction patterns, form validation
Priority: Critical=inaccessible, High=confusing, Medium=inconsistent, Low=cosmetic`,
test: `Focus: Missing unit tests, edge case coverage, integration gaps, assertion quality, test isolation
Priority: Critical=no security tests, High=no core logic tests, Medium=weak coverage, Low=minor gaps`,
quality: `Focus: Complexity, duplication, naming, documentation, code smells, readability
Priority: Critical=unmaintainable, High=significant issues, Medium=naming/docs, Low=minor refactoring`,
security: `Focus: Input validation, auth/authz, injection, XSS/CSRF, data exposure, access control
Priority: Critical=auth bypass/injection, High=missing authz, Medium=weak validation, Low=headers`,
performance: `Focus: N+1 queries, memory leaks, caching, algorithm efficiency, blocking operations
Priority: Critical=memory leaks, High=N+1/inefficient, Medium=missing cache, Low=minor optimization`,
maintainability: `Focus: Coupling, interface design, tech debt, extensibility, module boundaries, configuration
Priority: Critical=unrelated code changes, High=unclear boundaries, Medium=coupling, Low=refactoring`,
'best-practices': `Focus: Framework conventions, language patterns, anti-patterns, deprecated APIs, coding standards
Priority: Critical=anti-patterns causing bugs, High=convention violations, Medium=style, Low=cosmetic`
};
return guidance[perspective] || 'General code discovery analysis';
}
```
## Output File Structure
```
.workflow/issues/discoveries/
├── index.json # Discovery session index
└── {discovery-id}/
├── discovery-state.json # Unified state
├── perspectives/
│ └── {perspective}.json # Per-perspective findings
├── external-research.json # Exa research results (if enabled)
├── discovery-issues.jsonl # Generated candidate issues
└── summary.md # Summary from agent returns
```
## Schema References
| Schema | Path | Purpose |
|--------|------|---------|
| **Discovery State** | `~/.claude/workflows/cli-templates/schemas/discovery-state-schema.json` | Session state machine |
| **Discovery Finding** | `~/.claude/workflows/cli-templates/schemas/discovery-finding-schema.json` | Perspective analysis results |
## Error Handling
| Error | Message | Resolution |
|-------|---------|------------|
| No files matched | Pattern empty | Check target pattern, verify path exists |
| Agent failure | Perspective analysis error | Retry failed perspective, check agent logs |
| No findings | All perspectives clean | Report clean status, no issues to generate |
## Examples
```bash
# Quick scan with default perspectives
Skill(skill="issue-lifecycle", args="--action discover src/auth/**")
# Security-focused audit
Skill(skill="issue-lifecycle", args="--action discover src/payment/** --perspectives=security,bug")
# Full analysis with external research
Skill(skill="issue-lifecycle", args="--action discover src/api/** --external")
```
## Post-Phase Update
After discovery:
- Findings aggregated with priority distribution
- Issue candidates written to discovery-issues.jsonl
- Report: total findings, issues generated, priority breakdown
- Recommend next step: Export to issues → `/issue:plan` or `issue-resolve`

View File

@@ -0,0 +1,509 @@
# Phase 3: Discover by Prompt
> 来源: `commands/issue/discover-by-prompt.md`
## Overview
Prompt-driven issue discovery with intelligent planning. Instead of fixed perspectives, this command analyzes user intent via Gemini, plans exploration strategy dynamically, and executes iterative multi-agent exploration with ACE semantic search.
**Core workflow**: Prompt Analysis → ACE Context → Gemini Planning → Iterative Exploration → Cross-Analysis → Issue Generation
**Core Difference from Phase 2 (Discover)**:
- Phase 2: Pre-defined perspectives (bug, security, etc.), parallel execution
- Phase 3: User-driven prompt, Gemini-planned strategy, iterative exploration
## Prerequisites
- User prompt describing what to discover
- `ccw cli` available (for Gemini planning)
- `ccw issue` CLI available
## Auto Mode
When `--yes` or `-y`: Auto-continue all iterations, skip confirmations.
## Arguments
| Argument | Required | Type | Default | Description |
|----------|----------|------|---------|-------------|
| prompt | Yes | String | - | Natural language description of what to find |
| --scope | No | String | `**/*` | File pattern to explore |
| --depth | No | String | `standard` | `standard` (3 iterations) or `deep` (5+ iterations) |
| --max-iterations | No | Integer | 5 | Maximum exploration iterations |
| --plan-only | No | Flag | false | Stop after Gemini planning, show plan |
| -y, --yes | No | Flag | false | Skip all confirmations |
## Use Cases
| Scenario | Example Prompt |
|----------|----------------|
| API Contract | "Check if frontend calls match backend endpoints" |
| Error Handling | "Find inconsistent error handling patterns" |
| Migration Gap | "Compare old auth with new auth implementation" |
| Feature Parity | "Verify mobile has all web features" |
| Schema Drift | "Check if TypeScript types match API responses" |
| Integration | "Find mismatches between service A and service B" |
## Execution Steps
### Step 3.1: Prompt Analysis & Initialization
```javascript
// Parse arguments
const { prompt, scope, depth, maxIterations } = parseArgs(args);
// Generate discovery ID
const discoveryId = `DBP-${formatDate(new Date(), 'YYYYMMDD-HHmmss')}`;
// Create output directory
const outputDir = `.workflow/issues/discoveries/${discoveryId}`;
await mkdir(outputDir, { recursive: true });
await mkdir(`${outputDir}/iterations`, { recursive: true });
// Detect intent type from prompt
const intentType = detectIntent(prompt);
// Returns: 'comparison' | 'search' | 'verification' | 'audit'
// Initialize discovery state
await writeJson(`${outputDir}/discovery-state.json`, {
discovery_id: discoveryId,
type: 'prompt-driven',
prompt: prompt,
intent_type: intentType,
scope: scope || '**/*',
depth: depth || 'standard',
max_iterations: maxIterations || 5,
phase: 'initialization',
created_at: new Date().toISOString(),
iterations: [],
cumulative_findings: [],
comparison_matrix: null
});
```
### Step 3.2: ACE Context Gathering
```javascript
// Extract keywords from prompt for semantic search
const keywords = extractKeywords(prompt);
// Use ACE to understand codebase structure
const aceQueries = [
`Project architecture and module structure for ${keywords.join(', ')}`,
`Where are ${keywords[0]} implementations located?`,
`How does ${keywords.slice(0, 2).join(' ')} work in this codebase?`
];
const aceResults = [];
for (const query of aceQueries) {
const result = await mcp__ace-tool__search_context({
project_root_path: process.cwd(),
query: query
});
aceResults.push({ query, result });
}
// Build context package for Gemini (kept in memory)
const aceContext = {
prompt_keywords: keywords,
codebase_structure: aceResults[0].result,
relevant_modules: aceResults.slice(1).map(r => r.result),
detected_patterns: extractPatterns(aceResults)
};
```
**ACE Query Strategy by Intent Type**:
| Intent | ACE Queries |
|--------|-------------|
| **comparison** | "frontend API calls", "backend API handlers", "API contract definitions" |
| **search** | "{keyword} implementations", "{keyword} usage patterns" |
| **verification** | "expected behavior for {feature}", "test coverage for {feature}" |
| **audit** | "all {category} patterns", "{category} security concerns" |
### Step 3.3: Gemini Strategy Planning
```javascript
// Build Gemini planning prompt with ACE context
const planningPrompt = `
PURPOSE: Analyze discovery prompt and create exploration strategy based on codebase context
TASK:
• Parse user intent from prompt: "${prompt}"
• Use codebase context to identify specific modules and files to explore
• Create exploration dimensions with precise search targets
• Define comparison matrix structure (if comparison intent)
• Set success criteria and iteration strategy
MODE: analysis
CONTEXT: @${scope || '**/*'} | Discovery type: ${intentType}
## Codebase Context (from ACE semantic search)
${JSON.stringify(aceContext, null, 2)}
EXPECTED: JSON exploration plan:
{
"intent_analysis": { "type": "${intentType}", "primary_question": "...", "sub_questions": [...] },
"dimensions": [{ "name": "...", "description": "...", "search_targets": [...], "focus_areas": [...], "agent_prompt": "..." }],
"comparison_matrix": { "dimension_a": "...", "dimension_b": "...", "comparison_points": [...] },
"success_criteria": [...],
"estimated_iterations": N,
"termination_conditions": [...]
}
CONSTRAINTS: Use ACE context to inform targets | Focus on actionable plan
`;
// Execute Gemini planning
Bash({
command: `ccw cli -p "${planningPrompt}" --tool gemini --mode analysis`,
run_in_background: true,
timeout: 300000
});
// Parse and validate
const explorationPlan = await parseGeminiPlanOutput(geminiResult);
```
**Gemini Planning Output Schema**:
```json
{
"intent_analysis": {
"type": "comparison|search|verification|audit",
"primary_question": "string",
"sub_questions": ["string"]
},
"dimensions": [
{
"name": "frontend",
"description": "Client-side API calls and error handling",
"search_targets": ["src/api/**", "src/hooks/**"],
"focus_areas": ["fetch calls", "error boundaries", "response parsing"],
"agent_prompt": "Explore frontend API consumption patterns..."
}
],
"comparison_matrix": {
"dimension_a": "frontend",
"dimension_b": "backend",
"comparison_points": [
{"aspect": "endpoints", "frontend_check": "fetch URLs", "backend_check": "route paths"},
{"aspect": "methods", "frontend_check": "HTTP methods used", "backend_check": "methods accepted"},
{"aspect": "payloads", "frontend_check": "request body structure", "backend_check": "expected schema"},
{"aspect": "responses", "frontend_check": "response parsing", "backend_check": "response format"},
{"aspect": "errors", "frontend_check": "error handling", "backend_check": "error responses"}
]
},
"success_criteria": ["All API endpoints mapped", "Discrepancies identified with file:line"],
"estimated_iterations": 3,
"termination_conditions": ["All comparison points verified", "Confidence > 0.8"]
}
```
### Step 3.4: Iterative Agent Exploration (with ACE)
```javascript
let iteration = 0;
let cumulativeFindings = [];
let sharedContext = { aceDiscoveries: [], crossReferences: [] };
let shouldContinue = true;
while (shouldContinue && iteration < maxIterations) {
iteration++;
const iterationDir = `${outputDir}/iterations/${iteration}`;
await mkdir(iterationDir, { recursive: true });
// ACE-assisted iteration planning
const iterationAceQueries = iteration === 1
? explorationPlan.dimensions.map(d => d.focus_areas[0])
: deriveQueriesFromFindings(cumulativeFindings);
const iterationAceResults = [];
for (const query of iterationAceQueries) {
const result = await mcp__ace-tool__search_context({
project_root_path: process.cwd(),
query: `${query} in ${explorationPlan.scope}`
});
iterationAceResults.push({ query, result });
}
sharedContext.aceDiscoveries.push(...iterationAceResults);
// Plan this iteration
const iterationPlan = planIteration(iteration, explorationPlan, cumulativeFindings, iterationAceResults);
// Launch dimension agents with ACE context
const agentPromises = iterationPlan.dimensions.map(dimension =>
Task({
subagent_type: "cli-explore-agent",
run_in_background: false,
description: `Explore ${dimension.name} (iteration ${iteration})`,
prompt: buildDimensionPromptWithACE(dimension, iteration, cumulativeFindings, iterationAceResults, iterationDir)
})
);
const iterationResults = await Promise.all(agentPromises);
// Collect and analyze iteration findings
const iterationFindings = await collectIterationFindings(iterationDir, iterationPlan.dimensions);
// Cross-reference findings between dimensions
if (iterationPlan.dimensions.length > 1) {
const crossRefs = findCrossReferences(iterationFindings, iterationPlan.dimensions);
sharedContext.crossReferences.push(...crossRefs);
}
cumulativeFindings.push(...iterationFindings);
// Decide whether to continue
const convergenceCheck = checkConvergence(iterationFindings, cumulativeFindings, explorationPlan);
shouldContinue = !convergenceCheck.converged;
// Update state
await updateDiscoveryState(outputDir, {
iterations: [...state.iterations, {
number: iteration,
findings_count: iterationFindings.length,
ace_queries: iterationAceQueries.length,
cross_references: sharedContext.crossReferences.length,
new_discoveries: convergenceCheck.newDiscoveries,
confidence: convergenceCheck.confidence,
continued: shouldContinue
}],
cumulative_findings: cumulativeFindings
});
}
```
**Iteration Loop**:
```
┌─────────────────────────────────────────────────────────────┐
│ Iteration Loop │
├─────────────────────────────────────────────────────────────┤
│ 1. Plan: What to explore this iteration │
│ └─ Based on: previous findings + unexplored areas │
│ │
│ 2. Execute: Launch agents for this iteration │
│ └─ Each agent: explore → collect → return summary │
│ │
│ 3. Analyze: Process iteration results │
│ └─ New findings? Gaps? Contradictions? │
│ │
│ 4. Decide: Continue or terminate │
│ └─ Terminate if: max iterations OR convergence OR │
│ high confidence on all questions │
└─────────────────────────────────────────────────────────────┘
```
### Step 3.5: Cross-Analysis & Synthesis
```javascript
// For comparison intent, perform cross-analysis
if (intentType === 'comparison' && explorationPlan.comparison_matrix) {
const comparisonResults = [];
for (const point of explorationPlan.comparison_matrix.comparison_points) {
const dimensionAFindings = cumulativeFindings.filter(f =>
f.related_dimension === explorationPlan.comparison_matrix.dimension_a &&
f.category.includes(point.aspect)
);
const dimensionBFindings = cumulativeFindings.filter(f =>
f.related_dimension === explorationPlan.comparison_matrix.dimension_b &&
f.category.includes(point.aspect)
);
const discrepancies = findDiscrepancies(dimensionAFindings, dimensionBFindings, point);
comparisonResults.push({
aspect: point.aspect,
dimension_a_count: dimensionAFindings.length,
dimension_b_count: dimensionBFindings.length,
discrepancies: discrepancies,
match_rate: calculateMatchRate(dimensionAFindings, dimensionBFindings)
});
}
await writeJson(`${outputDir}/comparison-analysis.json`, {
matrix: explorationPlan.comparison_matrix,
results: comparisonResults,
summary: {
total_discrepancies: comparisonResults.reduce((sum, r) => sum + r.discrepancies.length, 0),
overall_match_rate: average(comparisonResults.map(r => r.match_rate)),
critical_mismatches: comparisonResults.filter(r => r.match_rate < 0.5)
}
});
}
const prioritizedFindings = prioritizeFindings(cumulativeFindings, explorationPlan);
```
### Step 3.6: Issue Generation & Summary
```javascript
// Convert high-confidence findings to issues
const issueWorthy = prioritizedFindings.filter(f =>
f.confidence >= 0.7 || f.priority === 'critical' || f.priority === 'high'
);
const issues = issueWorthy.map(finding => ({
id: `ISS-${discoveryId}-${finding.id}`,
title: finding.title,
description: finding.description,
source: { discovery_id: discoveryId, finding_id: finding.id, dimension: finding.related_dimension },
file: finding.file,
line: finding.line,
priority: finding.priority,
category: finding.category,
confidence: finding.confidence,
status: 'discovered',
created_at: new Date().toISOString()
}));
await writeJsonl(`${outputDir}/discovery-issues.jsonl`, issues);
// Update final state
await updateDiscoveryState(outputDir, {
phase: 'complete',
updated_at: new Date().toISOString(),
results: {
total_iterations: iteration,
total_findings: cumulativeFindings.length,
issues_generated: issues.length,
comparison_match_rate: comparisonResults
? average(comparisonResults.map(r => r.match_rate))
: null
}
});
// Prompt user for next action
await AskUserQuestion({
questions: [{
question: `Discovery complete: ${issues.length} issues from ${cumulativeFindings.length} findings across ${iteration} iterations. What next?`,
header: "Next Step",
multiSelect: false,
options: [
{ label: "Export to Issues (Recommended)", description: `Export ${issues.length} issues for planning` },
{ label: "Review Details", description: "View comparison analysis and iteration details" },
{ label: "Run Deeper", description: "Continue with more iterations" },
{ label: "Skip", description: "Complete without exporting" }
]
}]
});
```
## Dimension Agent Prompt Template
```javascript
function buildDimensionPromptWithACE(dimension, iteration, previousFindings, aceResults, outputDir) {
const relevantAceResults = aceResults.filter(r =>
r.query.includes(dimension.name) || dimension.focus_areas.some(fa => r.query.includes(fa))
);
return `
## Task Objective
Explore ${dimension.name} dimension for issue discovery (Iteration ${iteration})
## Context
- Dimension: ${dimension.name}
- Description: ${dimension.description}
- Search Targets: ${dimension.search_targets.join(', ')}
- Focus Areas: ${dimension.focus_areas.join(', ')}
## ACE Semantic Search Results (Pre-gathered)
${JSON.stringify(relevantAceResults.map(r => ({ query: r.query, files: r.result.slice(0, 5) })), null, 2)}
**Use ACE for deeper exploration**: mcp__ace-tool__search_context available.
${iteration > 1 ? `
## Previous Findings to Build Upon
${summarizePreviousFindings(previousFindings, dimension.name)}
## This Iteration Focus
- Explore areas not yet covered
- Verify/deepen previous findings
- Follow leads from previous discoveries
` : ''}
## MANDATORY FIRST STEPS
1. Read schema: ~/.claude/workflows/cli-templates/schemas/discovery-finding-schema.json
2. Review ACE results above for starting points
3. Explore files identified by ACE
## Exploration Instructions
${dimension.agent_prompt}
## Output Requirements
**1. Write JSON file**: ${outputDir}/${dimension.name}.json
- findings: [{id, title, category, description, file, line, snippet, confidence, related_dimension}]
- coverage: {files_explored, areas_covered, areas_remaining}
- leads: [{description, suggested_search}]
- ace_queries_used: [{query, result_count}]
**2. Return summary**: Total findings, key discoveries, recommended next areas
`;
}
```
## Output File Structure
```
.workflow/issues/discoveries/
└── {DBP-YYYYMMDD-HHmmss}/
├── discovery-state.json # Session state with iteration tracking
├── iterations/
│ ├── 1/
│ │ └── {dimension}.json # Dimension findings
│ ├── 2/
│ │ └── {dimension}.json
│ └── ...
├── comparison-analysis.json # Cross-dimension comparison (if applicable)
└── discovery-issues.jsonl # Generated issue candidates
```
## Configuration Options
| Flag | Default | Description |
|------|---------|-------------|
| `--scope` | `**/*` | File pattern to explore |
| `--depth` | `standard` | `standard` (3 iterations) or `deep` (5+ iterations) |
| `--max-iterations` | 5 | Maximum exploration iterations |
| `--tool` | `gemini` | Planning tool (gemini/qwen) |
| `--plan-only` | `false` | Stop after Gemini planning, show plan |
## Schema References
| Schema | Path | Used By |
|--------|------|---------|
| **Discovery State** | `discovery-state-schema.json` | Orchestrator (state tracking) |
| **Discovery Finding** | `discovery-finding-schema.json` | Dimension agents (output) |
| **Exploration Plan** | `exploration-plan-schema.json` | Gemini output validation (memory only) |
## Error Handling
| Error | Message | Resolution |
|-------|---------|------------|
| Gemini planning failed | CLI error | Retry with qwen fallback |
| ACE search failed | No results | Fall back to file glob patterns |
| No findings after iterations | Convergence at 0 | Report clean status |
| Agent timeout | Exploration too large | Narrow scope, reduce iterations |
## Examples
```bash
# Single module deep dive
Skill(skill="issue-discover", args="--action discover-by-prompt \"Find all potential issues in auth\" --scope=src/auth/**")
# API contract comparison
Skill(skill="issue-discover", args="--action discover-by-prompt \"Check if API calls match implementations\" --scope=src/**")
# Plan only mode
Skill(skill="issue-discover", args="--action discover-by-prompt \"Find inconsistent patterns\" --plan-only")
```
## Post-Phase Update
After prompt-driven discovery:
- Findings aggregated across iterations with confidence scores
- Comparison analysis generated (if comparison intent)
- Issue candidates written to discovery-issues.jsonl
- Report: total iterations, findings, issues, match rate
- Recommend next step: Export → issue-resolve (plan solutions)