mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-14 02:42:04 +08:00
Add comprehensive brainstorming commands for synthesis, system architecture, UI design, and user research perspectives
- Rewrite brainstorm commands to professional English with improved structure - Add synthesis command for cross-role integration and recommendations - Improve template reference format in gemini chat commands (remove backticks) - Enhance clarity and organization across all brainstorm role files - Standardize quality assurance sections and implementation protocols 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -10,51 +10,61 @@ examples:
|
||||
allowed-tools: Task(conceptual-planning-agent), TodoWrite(*)
|
||||
---
|
||||
|
||||
## 📊 **角色定义: Data Architect**
|
||||
## 📊 **Role Overview: Data Architect**
|
||||
|
||||
### 核心职责
|
||||
- **数据模型设计**: 设计高效、可扩展的数据模型
|
||||
- **数据流程设计**: 规划数据采集、处理、存储流程
|
||||
- **数据质量管理**: 确保数据准确性、完整性、一致性
|
||||
- **分析和洞察**: 设计数据分析和商业智能解决方案
|
||||
### Role Definition
|
||||
Strategic data professional responsible for designing scalable, efficient data architectures that enable data-driven decision making through robust data models, processing pipelines, and analytics platforms.
|
||||
|
||||
### 关注领域
|
||||
- **数据建模**: 关系模型、NoSQL、数据仓库、湖仓一体
|
||||
- **数据管道**: ETL/ELT流程、实时处理、批处理
|
||||
- **数据治理**: 数据质量、安全、隐私、合规
|
||||
- **分析平台**: BI工具、机器学习、报表系统
|
||||
### Core Responsibilities
|
||||
- **Data Model Design**: Create efficient and scalable data models and schemas
|
||||
- **Data Flow Design**: Plan data collection, processing, and storage workflows
|
||||
- **Data Quality Management**: Ensure data accuracy, completeness, and consistency
|
||||
- **Analytics and Insights**: Design data analysis and business intelligence solutions
|
||||
|
||||
## 🧠 **分析框架**
|
||||
### Focus Areas
|
||||
- **Data Modeling**: Relational models, NoSQL, data warehouses, lakehouse architectures
|
||||
- **Data Pipelines**: ETL/ELT processes, real-time processing, batch processing
|
||||
- **Data Governance**: Data quality, security, privacy, compliance frameworks
|
||||
- **Analytics Platforms**: BI tools, machine learning infrastructure, reporting systems
|
||||
|
||||
### Success Metrics
|
||||
- Data quality and consistency metrics
|
||||
- Processing performance and throughput
|
||||
- Analytics accuracy and business impact
|
||||
- Data governance and compliance adherence
|
||||
|
||||
## 🧠 **Analysis Framework**
|
||||
|
||||
@~/.claude/workflows/brainstorming-principles.md
|
||||
@~/.claude/workflows/conceptual-planning-agent.md
|
||||
|
||||
### 核心分析问题
|
||||
1. **数据需求和来源**:
|
||||
- 需要哪些数据来支持业务决策?
|
||||
- 数据来源的可靠性和质量如何?
|
||||
- 实时数据vs历史数据的需求平衡?
|
||||
### Key Analysis Questions
|
||||
|
||||
2. **数据架构和存储**:
|
||||
- 最适合的数据存储方案是什么?
|
||||
- 如何设计可扩展的数据模型?
|
||||
- 数据分区和索引策略?
|
||||
**1. Data Requirements and Sources**
|
||||
- What data is needed to support business decisions and analytics?
|
||||
- How reliable and high-quality are the available data sources?
|
||||
- What is the balance between real-time and historical data needs?
|
||||
|
||||
3. **数据处理和流程**:
|
||||
- 数据处理的性能要求?
|
||||
- 如何设计容错的数据管道?
|
||||
- 数据变更和版本控制策略?
|
||||
**2. Data Architecture and Storage**
|
||||
- What is the most appropriate data storage solution for requirements?
|
||||
- How should we design scalable and maintainable data models?
|
||||
- What are the optimal data partitioning and indexing strategies?
|
||||
|
||||
4. **分析和报告**:
|
||||
- 如何支持不同的分析需求?
|
||||
- 实时仪表板vs定期报告?
|
||||
- 数据可视化和自助分析能力?
|
||||
**3. Data Processing and Workflows**
|
||||
- What are the performance requirements for data processing?
|
||||
- How should we design fault-tolerant and resilient data pipelines?
|
||||
- What data versioning and change management strategies are needed?
|
||||
|
||||
## ⚙️ **执行协议**
|
||||
**4. Analytics and Reporting**
|
||||
- How can we support diverse analytical requirements and use cases?
|
||||
- What balance between real-time dashboards and periodic reports is optimal?
|
||||
- What self-service analytics and data visualization capabilities are needed?
|
||||
|
||||
### Phase 1: 会话检测与初始化
|
||||
## ⚙️ **Execution Protocol**
|
||||
|
||||
### Phase 1: Session Detection & Initialization
|
||||
```bash
|
||||
# 自动检测活动会话
|
||||
# Detect active workflow session
|
||||
CHECK: .workflow/.active-* marker files
|
||||
IF active_session EXISTS:
|
||||
session_id = get_active_session()
|
||||
@@ -63,14 +73,14 @@ ELSE:
|
||||
request_user_for_session_creation()
|
||||
```
|
||||
|
||||
### Phase 2: 目录结构创建
|
||||
### Phase 2: Directory Structure Creation
|
||||
```bash
|
||||
# 创建数据架构师分析目录
|
||||
# Create data architect analysis directory
|
||||
mkdir -p .workflow/WFS-{topic-slug}/.brainstorming/data-architect/
|
||||
```
|
||||
|
||||
### Phase 3: TodoWrite 初始化
|
||||
设置数据架构师视角分析的任务跟踪:
|
||||
### Phase 3: Task Tracking Initialization
|
||||
Initialize data architect perspective analysis tracking:
|
||||
```json
|
||||
[
|
||||
{"content": "Initialize data architect brainstorming session", "status": "completed", "activeForm": "Initializing session"},
|
||||
@@ -83,7 +93,7 @@ mkdir -p .workflow/WFS-{topic-slug}/.brainstorming/data-architect/
|
||||
]
|
||||
```
|
||||
|
||||
### Phase 4: 概念规划代理协调
|
||||
### Phase 4: Conceptual Planning Agent Coordination
|
||||
```bash
|
||||
Task(conceptual-planning-agent): "
|
||||
Conduct data architect perspective brainstorming for: {topic}
|
||||
@@ -98,114 +108,112 @@ USER CONTEXT: {captured_user_requirements_from_session}
|
||||
ANALYSIS REQUIREMENTS:
|
||||
1. Data Requirements Analysis
|
||||
- Identify all data sources (internal, external, third-party)
|
||||
- Analyze data types, volumes, and velocity requirements
|
||||
- Define data freshness and latency requirements
|
||||
- Assess data quality and completeness standards
|
||||
- Define data collection requirements and constraints
|
||||
- Analyze data volume, velocity, and variety characteristics
|
||||
- Map data lineage and dependencies across systems
|
||||
|
||||
2. Data Architecture Design
|
||||
- Design logical and physical data models
|
||||
- Plan data storage strategy (relational, NoSQL, data lake, warehouse)
|
||||
- Design data partitioning and sharding strategies
|
||||
- Plan for data archival and retention policies
|
||||
2. Data Model and Schema Design
|
||||
- Design logical and physical data models for optimal performance
|
||||
- Plan database schemas, indexes, and partitioning strategies
|
||||
- Design data relationships and referential integrity constraints
|
||||
- Plan for data archival, retention, and lifecycle management
|
||||
|
||||
3. Data Pipeline and Processing
|
||||
- Design ETL/ELT processes and data transformation workflows
|
||||
- Plan real-time vs batch processing requirements
|
||||
- Design error handling and data recovery mechanisms
|
||||
- Plan for data lineage and audit trails
|
||||
3. Data Pipeline Architecture
|
||||
- Design ETL/ELT processes for data ingestion and transformation
|
||||
- Plan real-time and batch processing workflows
|
||||
- Design error handling, monitoring, and alerting mechanisms
|
||||
- Plan for data pipeline scalability and performance optimization
|
||||
|
||||
4. Data Quality and Governance
|
||||
- Design data validation and quality monitoring
|
||||
- Plan data governance framework and policies
|
||||
- Assess privacy and compliance requirements (GDPR, CCPA, etc.)
|
||||
- Design data access controls and security measures
|
||||
- Establish data quality metrics and validation rules
|
||||
- Design data governance policies and procedures
|
||||
- Plan data security, privacy, and compliance frameworks
|
||||
- Create data cataloging and metadata management strategies
|
||||
|
||||
5. Analytics and Reporting Infrastructure
|
||||
- Design data warehouse/data mart architecture
|
||||
- Plan business intelligence and reporting solutions
|
||||
- Design self-service analytics capabilities
|
||||
5. Analytics and Business Intelligence
|
||||
- Design data warehouse and data mart architectures
|
||||
- Plan for OLAP cubes, reporting, and dashboard requirements
|
||||
- Design self-service analytics and data exploration capabilities
|
||||
- Plan for machine learning and advanced analytics integration
|
||||
|
||||
6. Performance and Scalability
|
||||
- Analyze current and projected data volumes
|
||||
- Design indexing and query optimization strategies
|
||||
- Plan horizontal and vertical scaling approaches
|
||||
- Design monitoring and alerting for data systems
|
||||
6. Performance and Scalability Planning
|
||||
- Analyze current and projected data volumes and growth
|
||||
- Design horizontal and vertical scaling strategies
|
||||
- Plan for high availability and disaster recovery
|
||||
- Optimize query performance and resource utilization
|
||||
|
||||
OUTPUT REQUIREMENTS: Save comprehensive analysis to:
|
||||
.workflow/WFS-{topic-slug}/.brainstorming/data-architect/
|
||||
- analysis.md (main data architecture analysis)
|
||||
- data-model.md (detailed data models and schemas)
|
||||
- pipeline-design.md (data processing workflows and ETL design)
|
||||
- governance-plan.md (data quality, security, and compliance framework)
|
||||
- data-model.md (data models, schemas, and relationships)
|
||||
- pipeline-design.md (data processing and ETL/ELT workflows)
|
||||
- governance-plan.md (data quality, security, and governance)
|
||||
|
||||
Apply data architecture expertise to create scalable, reliable, and insightful data solutions."
|
||||
```
|
||||
|
||||
## 📊 **输出结构**
|
||||
## 📊 **Output Specification**
|
||||
|
||||
### 保存位置
|
||||
### Output Location
|
||||
```
|
||||
.workflow/WFS-{topic-slug}/.brainstorming/data-architect/
|
||||
├── analysis.md # 主要数据架构分析
|
||||
├── data-model.md # 详细数据模型和架构
|
||||
├── pipeline-design.md # 数据处理工作流和ETL设计
|
||||
└── governance-plan.md # 数据质量、安全和合规框架
|
||||
├── analysis.md # Primary data architecture analysis
|
||||
├── data-model.md # Data models, schemas, and relationships
|
||||
├── pipeline-design.md # Data processing and ETL/ELT workflows
|
||||
└── governance-plan.md # Data quality, security, and governance
|
||||
```
|
||||
|
||||
### 文档模板
|
||||
### Document Templates
|
||||
|
||||
#### analysis.md 结构
|
||||
#### analysis.md Structure
|
||||
```markdown
|
||||
# Data Architect Analysis: {Topic}
|
||||
*Generated: {timestamp}*
|
||||
|
||||
## Executive Summary
|
||||
[核心数据架构发现和建议概述]
|
||||
[Key data architecture findings and recommendations overview]
|
||||
|
||||
## Current Data Landscape Assessment
|
||||
## Current Data Landscape
|
||||
### Existing Data Sources
|
||||
### Data Quality Issues
|
||||
### Current Data Architecture
|
||||
### Data Quality Assessment
|
||||
### Performance Bottlenecks
|
||||
### Integration Challenges
|
||||
|
||||
## Data Requirements Analysis
|
||||
### Business Data Requirements
|
||||
### Business Data Needs
|
||||
### Technical Data Requirements
|
||||
- Volume: [预期数据量和增长]
|
||||
- Velocity: [数据更新频率]
|
||||
- Variety: [数据类型和格式]
|
||||
- Veracity: [数据质量要求]
|
||||
### Data Volume and Growth Projections
|
||||
### Real-time vs Batch Processing Needs
|
||||
|
||||
## Proposed Data Architecture
|
||||
### Data Storage Strategy
|
||||
### Data Model Design
|
||||
### Integration Architecture
|
||||
### Analytics Infrastructure
|
||||
### Storage Architecture
|
||||
### Processing Pipeline Design
|
||||
### Integration Patterns
|
||||
|
||||
## Data Pipeline Design
|
||||
### Data Ingestion Strategy
|
||||
### Processing Workflows
|
||||
### Transformation Rules
|
||||
### Quality Assurance
|
||||
|
||||
## Governance and Compliance
|
||||
## Data Quality and Governance
|
||||
### Data Quality Framework
|
||||
### Security and Privacy
|
||||
### Audit and Lineage
|
||||
### Governance Policies
|
||||
### Security and Privacy Controls
|
||||
### Compliance Requirements
|
||||
|
||||
## Performance and Scalability
|
||||
### Optimization Strategies
|
||||
### Scaling Plans
|
||||
### Monitoring and Alerting
|
||||
### Disaster Recovery
|
||||
## Analytics and Reporting Strategy
|
||||
### Business Intelligence Architecture
|
||||
### Self-Service Analytics Design
|
||||
### Performance Monitoring
|
||||
### Scalability Planning
|
||||
|
||||
## Implementation Roadmap
|
||||
### Migration Strategy
|
||||
### Technology Stack Recommendations
|
||||
### Resource Requirements
|
||||
### Risk Mitigation Plan
|
||||
```
|
||||
|
||||
## 🔄 **会话集成**
|
||||
## 🔄 **Session Integration**
|
||||
|
||||
### 状态同步
|
||||
分析完成后,更新 `workflow-session.json`:
|
||||
### Status Synchronization
|
||||
Upon completion, update `workflow-session.json`:
|
||||
```json
|
||||
{
|
||||
"phases": {
|
||||
@@ -214,40 +222,47 @@ Apply data architecture expertise to create scalable, reliable, and insightful d
|
||||
"status": "completed",
|
||||
"completed_at": "timestamp",
|
||||
"output_directory": ".workflow/WFS-{topic}/.brainstorming/data-architect/",
|
||||
"key_insights": ["data_model_optimization", "pipeline_efficiency", "governance_requirement"]
|
||||
"key_insights": ["data_model_optimization", "pipeline_architecture", "analytics_strategy"]
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 与其他角色的协作
|
||||
数据架构师视角为其他角色提供:
|
||||
- **数据能力和限制** → Product Manager
|
||||
- **数据存储要求** → System Architect
|
||||
- **数据展示能力** → UI Designer
|
||||
- **数据安全要求** → Security Expert
|
||||
- **功能数据支持** → Feature Planner
|
||||
### Cross-Role Collaboration
|
||||
Data architect perspective provides:
|
||||
- **Data Storage Requirements** → System Architect
|
||||
- **Analytics Data Requirements** → Product Manager
|
||||
- **Data Visualization Specifications** → UI Designer
|
||||
- **Data Security Framework** → Security Expert
|
||||
- **Feature Data Requirements** → Feature Planner
|
||||
|
||||
## ✅ **质量标准**
|
||||
## ✅ **Quality Assurance**
|
||||
|
||||
### 必须包含的架构元素
|
||||
- [ ] 完整的数据模型设计
|
||||
- [ ] 详细的数据流程图
|
||||
- [ ] 数据质量保证方案
|
||||
- [ ] 可扩展性和性能优化
|
||||
- [ ] 合规和安全控制
|
||||
### Required Architecture Elements
|
||||
- [ ] Comprehensive data model with clear relationships and constraints
|
||||
- [ ] Scalable data pipeline design with error handling and monitoring
|
||||
- [ ] Data quality framework with validation rules and metrics
|
||||
- [ ] Governance plan addressing security, privacy, and compliance
|
||||
- [ ] Analytics architecture supporting business intelligence needs
|
||||
|
||||
### 数据架构原则检查
|
||||
- [ ] 可扩展性:支持数据量和用户增长
|
||||
- [ ] 可靠性:具有容错和恢复机制
|
||||
- [ ] 可维护性:清晰的数据模型和流程
|
||||
- [ ] 安全性:数据保护和访问控制
|
||||
- [ ] 高效性:优化的查询和处理性能
|
||||
### Data Architecture Principles
|
||||
- [ ] **Scalability**: Architecture can handle data volume and velocity growth
|
||||
- [ ] **Quality**: Built-in data validation, cleansing, and quality monitoring
|
||||
- [ ] **Security**: Data protection, access controls, and privacy compliance
|
||||
- [ ] **Performance**: Optimized for query performance and processing efficiency
|
||||
- [ ] **Maintainability**: Clear data lineage, documentation, and change management
|
||||
|
||||
### 数据质量指标
|
||||
- [ ] 数据准确性和完整性标准
|
||||
- [ ] 数据一致性检查机制
|
||||
- [ ] 数据时效性和新鲜度要求
|
||||
- [ ] 数据可追溯性和审计能力
|
||||
- [ ] 合规性检查和报告机制
|
||||
### Implementation Validation
|
||||
- [ ] **Technical Feasibility**: All proposed solutions are technically achievable
|
||||
- [ ] **Performance Requirements**: Architecture meets processing and query performance needs
|
||||
- [ ] **Cost Effectiveness**: Storage and processing costs are optimized and sustainable
|
||||
- [ ] **Governance Compliance**: Meets regulatory and organizational data requirements
|
||||
- [ ] **Future Readiness**: Design accommodates anticipated growth and changing needs
|
||||
|
||||
### Data Quality Standards
|
||||
- [ ] **Accuracy**: Data validation rules ensure correctness and consistency
|
||||
- [ ] **Completeness**: Strategies for handling missing data and ensuring coverage
|
||||
- [ ] **Timeliness**: Data freshness requirements met through appropriate processing
|
||||
- [ ] **Consistency**: Data definitions and formats standardized across systems
|
||||
- [ ] **Lineage**: Complete data lineage tracking from source to consumption
|
||||
Reference in New Issue
Block a user