Add documentation for new CLI commands: docs-related-cli and lite-fix

- Implemented the `docs-related-cli` command for context-aware documentation generation and update for changed modules using CLI execution with tool fallback.
- Introduced the `lite-fix` command for lightweight bug diagnosis and fix workflow, featuring intelligent severity assessment and optional hotfix mode for production incidents.
This commit is contained in:
catlog22
2025-11-23 22:18:39 +08:00
parent 4bb4bdc124
commit 7453987cfe
76 changed files with 3848 additions and 2013 deletions

View File

@@ -10,7 +10,7 @@ examples:
# Conflict Resolution Command
## Purpose
Analyzes conflicts between implementation plans and existing codebase, generating multiple resolution strategies.
Analyzes conflicts between implementation plans and existing codebase, **including module scenario uniqueness detection**, generating multiple resolution strategies with **iterative clarification until boundaries are clear**.
**Scope**: Detection and strategy generation only - NO code modification or task creation.
@@ -21,11 +21,14 @@ Analyzes conflicts between implementation plans and existing codebase, generatin
| Responsibility | Description |
|---------------|-------------|
| **Detect Conflicts** | Analyze plan vs existing code inconsistencies |
| **Scenario Uniqueness** | **NEW**: Search and compare new modules with existing modules for functional overlaps |
| **Generate Strategies** | Provide 2-4 resolution options per conflict |
| **Iterative Clarification** | **NEW**: Ask unlimited questions until scenario boundaries are clear and unique |
| **Agent Re-analysis** | **NEW**: Dynamically update strategies based on user clarifications |
| **CLI Analysis** | Use Gemini/Qwen (Claude fallback) |
| **User Decision** | Present options, never auto-apply |
| **User Decision** | Present options ONE BY ONE, never auto-apply |
| **Direct Text Output** | Output questions via text directly, NEVER use bash echo/printf |
| **Single Output** | `CONFLICT_RESOLUTION.md` with findings |
| **Structured Data** | JSON output for programmatic processing, NO file generation |
## Conflict Categories
@@ -49,6 +52,13 @@ Analyzes conflicts between implementation plans and existing codebase, generatin
- Setup conflicts
- Breaking updates
### 5. Module Scenario Overlap
- **NEW**: Functional overlap between new and existing modules
- Scenario boundary ambiguity
- Duplicate responsibility detection
- Module merge/split decisions
- **Requires iterative clarification until uniqueness confirmed**
## Execution Flow
### Phase 1: Validation
@@ -76,20 +86,28 @@ Task(subagent_type="cli-execution-agent", prompt=`
- Load plan from .workflow/active/{session_id}/.process/context-package.json
- Extract role analyses and requirements
### 2. Execute CLI Analysis
### 2. Execute CLI Analysis (Enhanced with Scenario Uniqueness Detection)
Primary (Gemini):
cd {project_root} && gemini -p "
PURPOSE: Detect conflicts between plan and codebase
PURPOSE: Detect conflicts between plan and codebase, including module scenario overlaps
TASK:
• Compare architectures
• Identify breaking API changes
• Detect data model incompatibilities
• Assess dependency conflicts
• **NEW: Analyze module scenario uniqueness**
- Extract new module functionality from plan
- Search all existing modules with similar functionality
- Compare scenario coverage and identify overlaps
- Generate clarification questions for boundary definition
MODE: analysis
CONTEXT: @{existing_files} @.workflow/active/{session_id}/**/*
EXPECTED: Conflict list with severity ratings
RULES: Focus on breaking changes and migration needs
CONTEXT: @**/*.ts @**/*.js @**/*.tsx @**/*.jsx @.workflow/active/{session_id}/**/*
EXPECTED: Conflict list with severity ratings, including ModuleOverlap conflicts with:
- Existing module list with scenarios
- Overlap analysis matrix
- Targeted clarification questions
RULES: $(cat ~/.claude/workflows/cli-templates/prompts/analysis/02-analyze-code-patterns.txt) | Focus on breaking changes, migration needs, and functional overlaps | analysis=READ-ONLY
"
Fallback: Qwen (same prompt) → Claude (manual analysis)
@@ -98,9 +116,11 @@ Task(subagent_type="cli-execution-agent", prompt=`
Template per conflict:
- Severity: Critical/High/Medium
- Category: Architecture/API/Data/Dependency
- Category: Architecture/API/Data/Dependency/ModuleOverlap
- Affected files + impact
- **For ModuleOverlap**: Include overlap_analysis with existing modules and scenarios
- Options with pros/cons, effort, risk
- **For ModuleOverlap strategies**: Add clarification_needed questions for boundary definition
- Recommended strategy + rationale
### 4. Return Structured Conflict Data
@@ -116,10 +136,10 @@ Task(subagent_type="cli-execution-agent", prompt=`
"id": "CON-001",
"brief": "一行中文冲突摘要",
"severity": "Critical|High|Medium",
"category": "Architecture|API|Data|Dependency",
"category": "Architecture|API|Data|Dependency|ModuleOverlap",
"affected_files": [
".workflow/session/{session}/.brainstorm/guidance-specification.md",
".workflow/session/{session}/.brainstorm/system-architect/analysis.md"
".workflow/active/{session}/.brainstorm/guidance-specification.md",
".workflow/active/{session}/.brainstorm/system-architect/analysis.md"
],
"description": "详细描述冲突 - 什么不兼容",
"impact": {
@@ -128,6 +148,23 @@ Task(subagent_type="cli-execution-agent", prompt=`
"migration_required": true|false,
"estimated_effort": "人天估计"
},
"overlap_analysis": {
"// NOTE": "仅当 category=ModuleOverlap 时需要此字段",
"new_module": {
"name": "新模块名称",
"scenarios": ["场景1", "场景2", "场景3"],
"responsibilities": "职责描述"
},
"existing_modules": [
{
"file": "src/existing/module.ts",
"name": "现有模块名称",
"scenarios": ["场景A", "场景B"],
"overlap_scenarios": ["重叠场景1", "重叠场景2"],
"responsibilities": "现有模块职责"
}
]
},
"strategies": [
{
"name": "策略名称(中文)",
@@ -137,9 +174,15 @@ Task(subagent_type="cli-execution-agent", prompt=`
"effort": "时间估计",
"pros": ["优点1", "优点2"],
"cons": ["缺点1", "缺点2"],
"clarification_needed": [
"// NOTE: 仅当需要用户进一步澄清时需要此字段(尤其是 ModuleOverlap",
"新模块的核心职责边界是什么?",
"如何与现有模块 X 协作?",
"哪些场景应该由新模块处理?"
],
"modifications": [
{
"file": ".workflow/session/{session}/.brainstorm/guidance-specification.md",
"file": ".workflow/active/{session}/.brainstorm/guidance-specification.md",
"section": "## 2. System Architect Decisions",
"change_type": "update",
"old_content": "原始内容片段(用于定位)",
@@ -147,7 +190,7 @@ Task(subagent_type="cli-execution-agent", prompt=`
"rationale": "为什么这样改"
},
{
"file": ".workflow/session/{session}/.brainstorm/system-architect/analysis.md",
"file": ".workflow/active/{session}/.brainstorm/system-architect/analysis.md",
"section": "## Design Decisions",
"change_type": "update",
"old_content": "原始内容片段",
@@ -204,155 +247,251 @@ Task(subagent_type="cli-execution-agent", prompt=`
`)
```
**Agent Internal Flow**:
**Agent Internal Flow** (Enhanced):
```
1. Load context package
2. Check conflict_risk (exit if none/low)
3. Read existing files + plan artifacts
4. Run CLI analysis (Gemini→Qwen→Claude)
5. Parse conflict findings
6. Generate 2-4 strategies per conflict with modifications
4. Run CLI analysis (Gemini→Qwen→Claude) with enhanced tasks:
- Standard conflict detection (Architecture/API/Data/Dependency)
- **NEW: Module scenario uniqueness detection**
* Extract new module functionality from plan
* Search all existing modules with similar keywords/functionality
* Compare scenario coverage and responsibilities
* Identify functional overlaps and boundary ambiguities
* Generate ModuleOverlap conflicts with overlap_analysis
5. Parse conflict findings (including ModuleOverlap category)
6. Generate 2-4 strategies per conflict:
- Include modifications for each strategy
- **For ModuleOverlap**: Add clarification_needed questions for boundary definition
7. Return JSON to stdout (NOT file write)
8. Return execution log path
```
### Phase 3: User Confirmation via Text Interaction
### Phase 3: Iterative User Interaction with Clarification Loop
**Command parses agent JSON output and presents conflicts to user via text**:
**Execution Flow**:
```
FOR each conflict (逐个处理,无数量限制):
clarified = false
round = 0
userClarifications = []
WHILE (!clarified && round < 10):
round++
// 1. Display conflict (包含所有关键字段)
- category, id, brief, severity, description
- IF ModuleOverlap: 展示 overlap_analysis
* new_module: {name, scenarios, responsibilities}
* existing_modules[]: {file, name, scenarios, overlap_scenarios, responsibilities}
// 2. Display strategies (2-4个策略 + 自定义选项)
- FOR each strategy: {name, approach, complexity, risk, effort, pros, cons}
* IF clarification_needed: 展示待澄清问题列表
- 自定义选项: {suggestions: modification_suggestions[]}
// 3. User selects strategy
userChoice = readInput()
IF userChoice == "自定义":
customConflicts.push({id, brief, category, suggestions, overlap_analysis})
clarified = true
BREAK
selectedStrategy = strategies[userChoice]
// 4. Clarification loop
IF selectedStrategy.clarification_needed.length > 0:
// 收集澄清答案
FOR each question:
answer = readInput()
userClarifications.push({question, answer})
// Agent 重新分析
reanalysisResult = Task(cli-execution-agent, prompt={
冲突信息: {id, brief, category, 策略}
用户澄清: userClarifications[]
场景分析: overlap_analysis (if ModuleOverlap)
输出: {
uniqueness_confirmed: bool,
rationale: string,
updated_strategy: {name, approach, complexity, risk, effort, modifications[]},
remaining_questions: [] (如果仍有歧义)
}
})
IF reanalysisResult.uniqueness_confirmed:
selectedStrategy = updated_strategy
selectedStrategy.clarifications = userClarifications
clarified = true
ELSE:
// 更新澄清问题,继续下一轮
selectedStrategy.clarification_needed = remaining_questions
ELSE:
clarified = true
resolvedConflicts.push({conflict, strategy: selectedStrategy})
END WHILE
END FOR
// Build output
selectedStrategies = resolvedConflicts.map(r => ({
conflict_id, strategy, clarifications[]
}))
```
**Key Data Structures**:
```javascript
// 1. Parse agent JSON output
const conflictData = JSON.parse(agentOutput);
const conflicts = conflictData.conflicts; // No 4-conflict limit
// 2. Format conflicts as text output (max 10 per round)
const batchSize = 10;
const batches = chunkArray(conflicts, batchSize);
for (const [batchIdx, batch] of batches.entries()) {
const totalBatches = batches.length;
// Output batch header
console.log(`===== 冲突解决 (第 ${batchIdx + 1}/${totalBatches} 轮) =====\n`);
// Output each conflict in batch
batch.forEach((conflict, idx) => {
const questionNum = batchIdx * batchSize + idx + 1;
console.log(`【问题${questionNum} - ${conflict.category}${conflict.id}: ${conflict.brief}`);
conflict.strategies.forEach((strategy, sIdx) => {
const optionLetter = String.fromCharCode(97 + sIdx); // a, b, c, ...
console.log(`${optionLetter}) ${strategy.name}`);
console.log(` 说明:${strategy.approach}`);
console.log(` 复杂度: ${strategy.complexity} | 风险: ${strategy.risk} | 工作量: ${strategy.effort}`);
});
// Add custom option
const customLetter = String.fromCharCode(97 + conflict.strategies.length);
console.log(`${customLetter}) 自定义修改`);
console.log(` 说明:根据修改建议自行处理,不应用预设策略`);
// Show modification suggestions
if (conflict.modification_suggestions && conflict.modification_suggestions.length > 0) {
console.log(` 修改建议:`);
conflict.modification_suggestions.forEach(suggestion => {
console.log(` - ${suggestion}`);
});
}
console.log();
});
console.log(`请回答 (格式: 1a 2b 3c...)`);
// Wait for user input
const userInput = await readUserInput();
// Parse answers
const answers = parseUserAnswers(userInput, batch);
// Custom conflict tracking
customConflicts[] = {
id, brief, category,
suggestions: modification_suggestions[],
overlap_analysis: { new_module{}, existing_modules[] } // ModuleOverlap only
}
// 3. Build selected strategies (exclude custom selections)
const selectedStrategies = answers.filter(a => !a.isCustom).map(a => a.strategy);
const customConflicts = answers.filter(a => a.isCustom).map(a => ({
id: a.conflict.id,
brief: a.conflict.brief,
suggestions: a.conflict.modification_suggestions
}));
// Agent re-analysis prompt output
{
uniqueness_confirmed: bool,
rationale: string,
updated_strategy: {
name, approach, complexity, risk, effort,
modifications: [{file, section, change_type, old_content, new_content, rationale}]
},
remaining_questions: string[]
}
```
**Text Output Example**:
**Text Output Example** (展示关键字段):
```markdown
===== 冲突解决 (第 1/1 轮) =====
============================================================
冲突 1/3 - 第 1 轮
============================================================
【ModuleOverlap】CON-001: 新增用户认证服务与现有模块功能重叠
严重程度: High | 描述: 计划中的 UserAuthService 与现有 AuthManager 场景重叠
【问题1 - Architecture】CON-001: 现有认证系统与计划不兼容
a) 渐进式迁移
说明:保留现有系统,逐步迁移到新方案
复杂度: Medium | 风险: Low | 工作量: 3-5天
b) 完全重写
说明:废弃旧系统,从零实现新认证
复杂度: High | 风险: Medium | 工作量: 7-10天
c) 自定义修改
说明:根据修改建议自行处理,不应用预设策略
修改建议:
- 评估现有认证系统的兼容性,考虑是否可以通过适配器模式桥接
- 检查JWT token格式和验证逻辑是否需要调整
- 确保用户会话管理与新架构保持一致
--- 场景重叠分析 ---
新模块: UserAuthService | 场景: 登录, Token验证, 权限, MFA
现有模块: AuthManager (src/auth/AuthManager.ts) | 重叠: 登录, Token验证
【问题2 - Data】CON-002: 数据库 schema 冲突
a) 添加迁移脚本
说明:创建数据库迁移脚本处理 schema 变更
复杂度: Low | 风险: Low | 工作量: 1-2天
b) 自定义修改
说明:根据修改建议自行处理,不应用预设策略
修改建议:
- 检查现有表结构是否支持新增字段,避免破坏性变更
- 考虑使用数据库版本控制工具如Flyway或Liquibase
- 准备数据迁移和回滚策略
--- 解决策略 ---
1) 合并 (Low复杂度 | Low风险 | 2-3天)
⚠️ 需澄清: AuthManager是否能承担MFA
请回答 (格式: 1a 2b)
2) 拆分边界 (Medium复杂度 | Medium风险 | 4-5天)
⚠️ 需澄清: 基础/高级认证边界? Token验证归谁?
3) 自定义修改
建议: 评估扩展性; 策略模式分离; 定义接口边界
请选择 (1-3): > 2
--- 澄清问答 (第1轮) ---
Q: 基础/高级认证边界?
A: 基础=密码登录+token验证, 高级=MFA+OAuth+SSO
Q: Token验证归谁?
A: 统一由 AuthManager 负责
🔄 重新分析...
✅ 唯一性已确认 | 理由: 边界清晰 - AuthManager(基础+token), UserAuthService(MFA+OAuth+SSO)
============================================================
冲突 2/3 - 第 1 轮 [下一个冲突]
============================================================
```
**User Input Examples**:
- `1a 2a` → Conflict 1: 渐进式迁移, Conflict 2: 添加迁移脚本
- `1b 2b` → Conflict 1: 完全重写, Conflict 2: 自定义修改
- `1c 2c` → Both choose custom modification (user handles manually with suggestions)
**Loop Characteristics**: 逐个处理 | 无限轮次(max 10) | 动态问题生成 | Agent重新分析判断唯一性 | ModuleOverlap场景边界澄清
### Phase 4: Apply Modifications
```javascript
// 1. Extract modifications from selected strategies
// 1. Extract modifications from resolved strategies
const modifications = [];
selectedStrategies.forEach(strategy => {
if (strategy !== "skip") {
modifications.push(...strategy.modifications);
selectedStrategies.forEach(item => {
if (item.strategy && item.strategy.modifications) {
modifications.push(...item.strategy.modifications.map(mod => ({
...mod,
conflict_id: item.conflict_id,
clarifications: item.clarifications
})));
}
});
console.log(`\n正在应用 ${modifications.length} 个修改...`);
// 2. Apply each modification using Edit tool
modifications.forEach(mod => {
if (mod.change_type === "update") {
Edit({
file_path: mod.file,
old_string: mod.old_content,
new_string: mod.new_content
});
const appliedModifications = [];
const failedModifications = [];
modifications.forEach((mod, idx) => {
try {
console.log(`[${idx + 1}/${modifications.length}] 修改 ${mod.file}...`);
if (mod.change_type === "update") {
Edit({
file_path: mod.file,
old_string: mod.old_content,
new_string: mod.new_content
});
} else if (mod.change_type === "add") {
// Handle addition - append or insert based on section
const fileContent = Read(mod.file);
const updated = insertContentAfterSection(fileContent, mod.section, mod.new_content);
Write(mod.file, updated);
} else if (mod.change_type === "remove") {
Edit({
file_path: mod.file,
old_string: mod.old_content,
new_string: ""
});
}
appliedModifications.push(mod);
console.log(` ✓ 成功`);
} catch (error) {
console.log(` ✗ 失败: ${error.message}`);
failedModifications.push({ ...mod, error: error.message });
}
// Handle "add" and "remove" similarly
});
// 3. Update context-package.json
// 3. Update context-package.json with resolution details
const contextPackage = JSON.parse(Read(contextPath));
contextPackage.conflict_detection.conflict_risk = "resolved";
contextPackage.conflict_detection.resolved_conflicts = conflicts.map(c => c.id);
contextPackage.conflict_detection.resolved_conflicts = selectedStrategies.map(s => ({
conflict_id: s.conflict_id,
strategy_name: s.strategy.name,
clarifications: s.clarifications
}));
contextPackage.conflict_detection.custom_conflicts = customConflicts.map(c => c.id);
contextPackage.conflict_detection.resolved_at = new Date().toISOString();
Write(contextPath, JSON.stringify(contextPackage, null, 2));
// 4. Output custom conflict summary (if any)
// 4. Output custom conflict summary with overlap analysis (if any)
if (customConflicts.length > 0) {
console.log("\n===== 需要自定义处理的冲突 =====\n");
console.log(`\n${'='.repeat(60)}`);
console.log(`需要自定义处理的冲突 (${customConflicts.length})`);
console.log(`${'='.repeat(60)}\n`);
customConflicts.forEach(conflict => {
console.log(`${conflict.id}${conflict.brief}`);
console.log("修改建议:");
console.log(`${conflict.category}${conflict.id}: ${conflict.brief}`);
// Show overlap analysis for ModuleOverlap conflicts
if (conflict.category === 'ModuleOverlap' && conflict.overlap_analysis) {
console.log(`\n场景重叠信息:`);
console.log(` 新模块: ${conflict.overlap_analysis.new_module.name}`);
console.log(` 场景: ${conflict.overlap_analysis.new_module.scenarios.join(', ')}`);
console.log(`\n 与以下模块重叠:`);
conflict.overlap_analysis.existing_modules.forEach(mod => {
console.log(` - ${mod.name} (${mod.file})`);
console.log(` 重叠场景: ${mod.overlap_scenarios.join(', ')}`);
});
}
console.log(`\n修改建议:`);
conflict.suggestions.forEach(suggestion => {
console.log(` - ${suggestion}`);
});
@@ -360,24 +499,42 @@ if (customConflicts.length > 0) {
});
}
// 5. Return summary
// 5. Output failure summary (if any)
if (failedModifications.length > 0) {
console.log(`\n⚠️ 部分修改失败 (${failedModifications.length}):`);
failedModifications.forEach(mod => {
console.log(` - ${mod.file}: ${mod.error}`);
});
}
// 6. Return summary
return {
resolved: modifications.length,
custom: customConflicts.length,
modified_files: [...new Set(modifications.map(m => m.file))],
custom_conflicts: customConflicts
total_conflicts: conflicts.length,
resolved_with_strategy: selectedStrategies.length,
custom_handling: customConflicts.length,
modifications_applied: appliedModifications.length,
modifications_failed: failedModifications.length,
modified_files: [...new Set(appliedModifications.map(m => m.file))],
custom_conflicts: customConflicts,
clarification_records: selectedStrategies.filter(s => s.clarifications.length > 0)
};
```
**Validation**:
```
✓ Agent returns valid JSON structure
Text output displays all conflicts (max 10 per round)
User selections captured correctly
✓ Agent returns valid JSON structure with ModuleOverlap conflicts
Conflicts processed ONE BY ONE (not in batches)
ModuleOverlap conflicts include overlap_analysis field
✓ Strategies with clarification_needed display questions
✓ User selections captured correctly per conflict
✓ Clarification loop continues until uniqueness confirmed
✓ Agent re-analysis returns uniqueness_confirmed and updated_strategy
✓ Maximum 10 rounds per conflict safety limit enforced
✓ Edit tool successfully applies modifications
✓ guidance-specification.md updated
✓ Role analyses (*.md) updated
✓ context-package.json marked as resolved
✓ context-package.json marked as resolved with clarification records
✓ Custom conflicts display overlap_analysis for manual handling
✓ Agent log saved to .workflow/active/{session_id}/.chat/
```
@@ -441,24 +598,38 @@ If Edit tool fails mid-application:
- NO report file generation
**User Interaction**:
- Text-based strategy selection (max 10 conflicts per round)
- **Iterative conflict processing**: One conflict at a time, not in batches
- Each conflict: 2-4 strategy options + "自定义修改" option (with suggestions)
- **Clarification loop**: Unlimited questions per conflict until uniqueness confirmed (max 10 rounds)
- **ModuleOverlap conflicts**: Display overlap_analysis with existing modules
- **Agent re-analysis**: Dynamic strategy updates based on user clarifications
### Success Criteria
```
✓ CLI analysis returns valid JSON structure
Conflicts presented in batches (max 10 per round)
✓ CLI analysis returns valid JSON structure with ModuleOverlap category
Agent performs scenario uniqueness detection (searches existing modules)
✓ Conflicts processed ONE BY ONE with iterative clarification
✓ Min 2 strategies per conflict with modifications
✓ ModuleOverlap conflicts include overlap_analysis with existing modules
✓ Strategies requiring clarification include clarification_needed questions
✓ Each conflict includes 2-5 modification_suggestions
✓ Text output displays all conflicts correctly with suggestions
✓ User selections captured and processed
✓ Text output displays conflict with overlap analysis (if ModuleOverlap)
✓ User selections captured per conflict
✓ Clarification loop continues until uniqueness confirmed (unlimited rounds, max 10)
✓ Agent re-analysis with user clarifications updates strategy
✓ Uniqueness confirmation based on clear scenario boundaries
✓ Edit tool applies modifications successfully
✓ Custom conflicts displayed with suggestions for manual handling
✓ Custom conflicts displayed with overlap_analysis for manual handling
✓ guidance-specification.md updated with resolved conflicts
✓ Role analyses (*.md) updated with resolved conflicts
✓ context-package.json marked as "resolved"
✓ context-package.json marked as "resolved" with clarification records
✓ No CONFLICT_RESOLUTION.md file generated
✓ Modification summary includes custom conflict count
✓ Modification summary includes:
- Total conflicts
- Resolved with strategy (count)
- Custom handling (count)
- Clarification records
- Overlap analysis for custom ModuleOverlap conflicts
✓ Agent log saved to .workflow/active/{session_id}/.chat/
✓ Error handling robust (validate/retry/degrade)
```

View File

@@ -22,7 +22,7 @@ Orchestrator command that invokes `context-search-agent` to gather comprehensive
- **Agent Delegation**: Delegate all discovery to `context-search-agent` for autonomous execution
- **Detection-First**: Check for existing context-package before executing
- **Plan Mode**: Full comprehensive analysis (vs lightweight brainstorm mode)
- **Standardized Output**: Generate `.workflow/session/{session}/.process/context-package.json`
- **Standardized Output**: Generate `.workflow/active/{session}/.process/context-package.json`
## Execution Flow
@@ -57,8 +57,6 @@ Task(
subagent_type="context-search-agent",
description="Gather comprehensive context for plan",
prompt=`
You are executing as context-search-agent (.claude/agents/context-search-agent.md).
## Execution Mode
**PLAN MODE** (Comprehensive) - Full Phase 1-3 execution

View File

@@ -17,242 +17,140 @@ Autonomous task JSON and IMPL_PLAN.md generation using action-planning-agent wit
- **Two-Phase Flow**: Discovery (context gathering) → Output (document generation)
- **Memory-First**: Reuse loaded documents from conversation memory
- **MCP-Enhanced**: Use MCP tools for advanced code analysis and research
- **Pre-Selected Templates**: Command selects correct template based on `--cli-execute` flag **before** invoking agent
- **Agent Simplicity**: Agent receives pre-selected template and focuses only on content generation
- **Path Clarity**: All `focus_paths` prefer absolute paths (e.g., `D:\\project\\src\\module`), or clear relative paths from project root (e.g., `./src/module`)
## Execution Lifecycle
### Phase 1: Discovery & Context Loading
**⚡ Memory-First Rule**: Skip file loading if documents already in conversation memory
### Phase 1: Context Preparation (Command Responsibility)
**Agent Context Package**:
```javascript
{
"session_id": "WFS-[session-id]",
"execution_mode": "agent-mode" | "cli-execute-mode", // Determined by flag
"task_json_template_path": "~/.claude/workflows/cli-templates/prompts/workflow/task-json-agent-mode.txt"
| "~/.claude/workflows/cli-templates/prompts/workflow/task-json-cli-mode.txt",
// Path selected by command based on --cli-execute flag, agent reads it
"session_metadata": {
// If in memory: use cached content
// Else: Load from .workflow/active//{session-id}/workflow-session.json
},
"brainstorm_artifacts": {
// Loaded from context-package.json → brainstorm_artifacts section
"role_analyses": [
{
"role": "system-architect",
"files": [{"path": "...", "type": "primary|supplementary"}]
}
],
"guidance_specification": {"path": "...", "exists": true},
"synthesis_output": {"path": "...", "exists": true},
"conflict_resolution": {"path": "...", "exists": true} // if conflict_risk >= medium
},
"context_package_path": ".workflow/active//{session-id}/.process/context-package.json",
"context_package": {
// If in memory: use cached content
// Else: Load from .workflow/active//{session-id}/.process/context-package.json
},
"mcp_capabilities": {
"code_index": true,
"exa_code": true,
"exa_web": true
}
}
**Command prepares session paths and metadata, agent loads content autonomously.**
**Session Path Structure**:
```
.workflow/active/WFS-{session-id}/
├── workflow-session.json # Session metadata
├── .process/
└── context-package.json # Context package with artifact catalog
├── .task/ # Output: Task JSON files
├── IMPL_PLAN.md # Output: Implementation plan
└── TODO_LIST.md # Output: TODO list
```
**Discovery Actions**:
1. **Load Session Context** (if not in memory)
```javascript
if (!memory.has("workflow-session.json")) {
Read(.workflow/active//{session-id}/workflow-session.json)
}
```
**Command Preparation**:
1. **Assemble Session Paths** for agent prompt:
- `session_metadata_path`
- `context_package_path`
- Output directory paths
2. **Load Context Package** (if not in memory)
```javascript
if (!memory.has("context-package.json")) {
Read(.workflow/active//{session-id}/.process/context-package.json)
}
```
2. **Provide Metadata** (simple values):
- `session_id`
- `execution_mode` (agent-mode | cli-execute-mode)
- `mcp_capabilities` (available MCP tools)
3. **Extract & Load Role Analyses** (from context-package.json)
```javascript
// Extract role analysis paths from context package
const roleAnalysisPaths = contextPackage.brainstorm_artifacts.role_analyses
.flatMap(role => role.files.map(f => f.path));
// Load each role analysis file
roleAnalysisPaths.forEach(path => Read(path));
```
4. **Load Conflict Resolution** (from context-package.json, if exists)
```javascript
if (contextPackage.brainstorm_artifacts.conflict_resolution?.exists) {
Read(contextPackage.brainstorm_artifacts.conflict_resolution.path)
}
```
5. **Code Analysis with Native Tools** (optional - enhance understanding)
```bash
# Find relevant files for task context
find . -name "*auth*" -type f
rg "authentication|oauth" -g "*.ts"
```
6. **MCP External Research** (optional - gather best practices)
```javascript
// Get external examples for implementation
mcp__exa__get_code_context_exa(
query="TypeScript JWT authentication best practices",
tokensNum="dynamic"
)
```
**Note**: Agent autonomously loads files based on context package content (dynamic, not fixed template). Brainstorming artifacts only loaded if they exist in session.
### Phase 2: Agent Execution (Document Generation)
**Pre-Agent Template Selection** (Command decides path before invoking agent):
```javascript
// Command checks flag and selects template PATH (not content)
const templatePath = hasCliExecuteFlag
? "~/.claude/workflows/cli-templates/prompts/workflow/task-json-cli-mode.txt"
: "~/.claude/workflows/cli-templates/prompts/workflow/task-json-agent-mode.txt";
```
**Agent Invocation**:
```javascript
Task(
subagent_type="action-planning-agent",
description="Generate task JSON and implementation plan",
prompt=`
## Execution Context
## Task Objective
Generate implementation plan (IMPL_PLAN.md), task JSONs, and TODO list for workflow session
**Session ID**: WFS-{session-id}
**Execution Mode**: {agent-mode | cli-execute-mode}
**Task JSON Template Path**: {template_path}
## MANDATORY FIRST STEPS
1. Read session metadata: {session.session_metadata_path}
2. Load context package: {session.context_package_path}
3. **Dynamically load files based on context package content** (see below)
## Phase 1: Discovery Results (Provided Context)
## Dynamic Content Loading Strategy
### Session Metadata
{session_metadata_content}
**Load files based on what exists in context package - NOT a fixed template**
### Role Analyses (Enhanced by Synthesis)
{role_analyses_content}
- Includes requirements, design specs, enhancements, and clarifications from synthesis phase
### Step 1: Always Load (Required)
- **Session Metadata** → Extract user input
- User description: Original task requirements
- Project scope and boundaries
- Technical constraints
### Artifacts Inventory
- **Guidance Specification**: {guidance_spec_path}
- **Role Analyses**: {role_analyses_list}
### Step 2: Check Context Package (Conditional Loading)
### Context Package
{context_package_summary}
- Includes conflict_risk assessment
**If `brainstorm_artifacts` exists in context package:**
- Load artifacts **in priority order** as listed below
- **If `brainstorm_artifacts` does NOT exist**: Skip to Step 3
### Conflict Resolution (Conditional)
If conflict_risk was medium/high, modifications have been applied to:
- **guidance-specification.md**: Design decisions updated to resolve conflicts
- **Role analyses (*.md)**: Recommendations adjusted for compatibility
- **context-package.json**: Marked as "resolved" with conflict IDs
- NO separate CONFLICT_RESOLUTION.md file (conflicts resolved in-place)
**Priority Loading (when artifacts exist):**
1. **guidance-specification.md** (if `guidance_specification.exists = true`)
- Overall design framework - use as primary reference
### MCP Analysis Results (Optional)
**Code Structure**: {mcp_code_index_results}
**External Research**: {mcp_exa_research_results}
2. **Role Analyses** (if `role_analyses[]` array exists)
- Load ALL role analysis files listed in array
- Each file path: `role_analyses[i].files[j].path`
## Phase 2: Document Generation Task
3. **Synthesis Output** (if `synthesis_output.exists = true`)
- Integrated view with clarifications
**Agent Configuration Reference**: All task generation rules, quantification requirements, quality standards, and execution details are defined in action-planning-agent.
4. **Conflict Resolution** (if `conflict_risk` = "medium" or "high")
- Check `conflict_resolution.status`
- If "resolved": Use updated artifacts (conflicts pre-addressed)
Refer to: @.claude/agents/action-planning-agent.md for:
- Task Decomposition Standards
- Quantification Requirements (MANDATORY)
- 5-Field Task JSON Schema
- IMPL_PLAN.md Structure
- TODO_LIST.md Format
- Execution Flow & Quality Validation
### Step 3: Extract Project Context
- `focus_areas`: Target directories for implementation
- `assets`: Existing code patterns to reuse
### Required Outputs Summary
## Session Paths
- Session Metadata: .workflow/active/{session-id}/workflow-session.json
- Context Package: .workflow/active/{session-id}/.process/context-package.json
- Output Task Dir: .workflow/active/{session-id}/.task/
- Output IMPL_PLAN: .workflow/active/{session-id}/IMPL_PLAN.md
- Output TODO_LIST: .workflow/active/{session-id}/TODO_LIST.md
#### 1. Task JSON Files (.task/IMPL-*.json)
- **Location**: `.workflow/active//{session-id}/.task/`
- **Template**: Read from `{template_path}` (pre-selected by command based on `--cli-execute` flag)
- **Schema**: 5-field structure (id, title, status, meta, context, flow_control) with artifacts integration
- **Details**: See action-planning-agent.md § Task JSON Generation
## Context Metadata
- Session ID: {session-id}
- Execution Mode: {agent-mode | cli-execute-mode}
- MCP Capabilities Available: {exa_code, exa_web, code_index}
#### 2. IMPL_PLAN.md
- **Location**: `.workflow/active//{session-id}/IMPL_PLAN.md`
- **Template**: `~/.claude/workflows/cli-templates/prompts/workflow/impl-plan-template.txt`
- **Details**: See action-planning-agent.md § Implementation Plan Creation
**Note**: Content loading is **dynamic** based on actual files in session, not a fixed template
#### 3. TODO_LIST.md
- **Location**: `.workflow/active//{session-id}/TODO_LIST.md`
- **Format**: Hierarchical task list with status indicators (▸, [ ], [x]) and JSON links
- **Details**: See action-planning-agent.md § TODO List Generation
## Expected Deliverables
1. **Task JSON Files** (.task/IMPL-*.json)
- 6-field schema (id, title, status, context_package_path, meta, context, flow_control)
- Quantified requirements with explicit counts
- Artifacts integration from context package
- Flow control with pre_analysis steps
### Agent Execution Summary
2. **Implementation Plan** (IMPL_PLAN.md)
- Context analysis and artifact references
- Task breakdown and execution strategy
- Complete structure per agent definition
**Key Steps** (Detailed instructions in action-planning-agent.md):
1. Load task JSON template from provided path
2. Extract and decompose tasks with quantification
3. Generate task JSON files enforcing quantification requirements
4. Create IMPL_PLAN.md using template
5. Generate TODO_LIST.md matching task JSONs
6. Update session state
3. **TODO List** (TODO_LIST.md)
- Hierarchical structure with status indicators (▸, [ ], [x])
- Links to task JSONs and summaries
- Matches task JSON hierarchy
**Quality Gates** (Full checklist in action-planning-agent.md):
- ✓ Quantification requirements enforced (explicit counts, measurable acceptance, exact targets)
- ✓ Task count ≤10 (hard limit)
- ✓ Artifact references mapped correctly
- ✓ MCP tool integration added
- ✓ Documents follow template structure
## Quality Standards
- Task count ≤12 (hard limit)
- All requirements quantified (explicit counts and lists)
- Acceptance criteria measurable (verification commands)
- Artifact references mapped from context package
- All documents follow agent-defined structure
## Output
Generate all three documents and report completion status:
- Task JSON files created: N files
- Artifacts integrated: synthesis-spec, guidance-specification, N role analyses
- MCP enhancements: code-index, exa-research
- Session ready for execution: /workflow:execute
## Success Criteria
- All task JSONs valid and saved to .task/ directory
- IMPL_PLAN.md created with complete structure
- TODO_LIST.md generated matching task JSONs
- Return completion status with file count
`
)
```
### Agent Context Passing
**Memory-Aware Context Assembly**:
```javascript
// Assemble context package for agent
const agentContext = {
session_id: "WFS-[id]",
// Use memory if available, else load
session_metadata: memory.has("workflow-session.json")
? memory.get("workflow-session.json")
: Read(.workflow/active/WFS-[id]/workflow-session.json),
context_package_path: ".workflow/active/WFS-[id]/.process/context-package.json",
context_package: memory.has("context-package.json")
? memory.get("context-package.json")
: Read(".workflow/active/WFS-[id]/.process/context-package.json"),
// Extract brainstorm artifacts from context package
brainstorm_artifacts: extractBrainstormArtifacts(context_package),
// Load role analyses using paths from context package
role_analyses: brainstorm_artifacts.role_analyses
.flatMap(role => role.files)
.map(file => Read(file.path)),
// Load conflict resolution if exists (from context package)
conflict_resolution: brainstorm_artifacts.conflict_resolution?.exists
? Read(brainstorm_artifacts.conflict_resolution.path)
: null,
// Optional MCP enhancements
mcp_analysis: executeMcpDiscovery()
}
```
**Key Changes from Previous Version**:
1. **Paths over Content**: Provide file paths for agent to read, not embedded content
2. **MANDATORY FIRST STEPS**: Explicit requirement to load session metadata and context package
3. **Complete Session Paths**: All file paths provided for agent operations
4. **Emphasized Deliverables**: Clear deliverable requirements with quality standards
5. **No Agent Self-Reference**: Removed "Refer to action-planning-agent.md" (agent knows its own definition)
6. **No Template Paths**: Removed all template references (agent has complete schema/structure definitions)

View File

@@ -30,11 +30,6 @@ Autonomous TDD task JSON and IMPL_PLAN.md generation using action-planning-agent
- **1 feature = 1 task** containing complete TDD cycle internally
- Each task executes Red-Green-Refactor phases sequentially
- Task count = Feature count (typically 5 features = 5 tasks)
- **Benefits**:
- 70% reduction in task management overhead
- Continuous context per feature (no switching between TEST/IMPL/REFACTOR)
- Simpler dependency management
- Maintains TDD rigor through internal phase structure
**Previous Approach** (Deprecated):
- 1 feature = 3 separate tasks (TEST-N.M, IMPL-N.M, REFACTOR-N.M)
@@ -499,11 +494,7 @@ IMPL (Green phase) tasks include automatic test-fix cycle:
- **Repeat**: Up to max_iterations (default: 3)
5. **Safety Net**: Auto-revert all changes if max iterations reached
**Key Benefits**:
- Faster feedback loop within Green phase
- Autonomous recovery from initial implementation errors
- Systematic debugging with Gemini's bug-fix template
- Safe rollback prevents broken TDD state
## Configuration Options
- **meta.max_iterations**: Number of fix attempts (default: 3 for TDD, 5 for test-gen)