feat: Enhance BinaryANNIndex with vectorized search and performance benchmarking

This commit is contained in:
catlog22
2026-01-02 11:49:54 +08:00
parent da68ba0b82
commit 9129c981a4
4 changed files with 479 additions and 140 deletions

View File

@@ -608,31 +608,43 @@ class ChainSearchEngine:
for index_path, chunk_ids in candidates_by_index.items():
try:
store = SQLiteStore(index_path)
dense_embeddings = store.get_dense_embeddings(chunk_ids)
chunks_data = store.get_chunks_by_ids(chunk_ids)
# Read directly from semantic_chunks table (where cascade-index stores data)
import sqlite3
conn = sqlite3.connect(str(index_path))
conn.row_factory = sqlite3.Row
# Create lookup for chunk content
chunk_content: Dict[int, Dict[str, Any]] = {
c["id"]: c for c in chunks_data
}
placeholders = ",".join("?" * len(chunk_ids))
rows = conn.execute(
f"SELECT id, file_path, content, embedding_dense FROM semantic_chunks WHERE id IN ({placeholders})",
chunk_ids
).fetchall()
conn.close()
for chunk_id in chunk_ids:
dense_bytes = dense_embeddings.get(chunk_id)
chunk_info = chunk_content.get(chunk_id)
# Batch processing: collect all valid embeddings first
valid_rows = []
dense_vectors = []
for row in rows:
dense_bytes = row["embedding_dense"]
if dense_bytes is not None:
valid_rows.append(row)
dense_vectors.append(np.frombuffer(dense_bytes, dtype=np.float32))
if dense_bytes is None or chunk_info is None:
continue
if not dense_vectors:
continue
# Compute cosine similarity
dense_vec = np.frombuffer(dense_bytes, dtype=np.float32)
score = self._compute_cosine_similarity(query_dense, dense_vec)
# Stack into matrix for batch computation
doc_matrix = np.vstack(dense_vectors)
# Create search result
excerpt = chunk_info.get("content", "")[:500]
# Batch compute cosine similarities
scores = self._compute_cosine_similarity_batch(query_dense, doc_matrix)
# Create search results
for i, row in enumerate(valid_rows):
score = float(scores[i])
excerpt = (row["content"] or "")[:500]
result = SearchResult(
path=chunk_info.get("file_path", ""),
score=float(score),
path=row["file_path"] or "",
score=score,
excerpt=excerpt,
)
scored_results.append((score, result))
@@ -783,6 +795,58 @@ class ChainSearchEngine:
return float(dot_product / (norm_q * norm_d))
def _compute_cosine_similarity_batch(
self,
query_vec: "np.ndarray",
doc_matrix: "np.ndarray",
) -> "np.ndarray":
"""Compute cosine similarity between query and multiple document vectors.
Uses vectorized matrix operations for efficient batch computation.
Args:
query_vec: Query embedding vector of shape (dim,)
doc_matrix: Document embeddings matrix of shape (n_docs, dim)
Returns:
Array of cosine similarity scores of shape (n_docs,)
"""
if not NUMPY_AVAILABLE:
return np.zeros(doc_matrix.shape[0])
# Ensure query is 1D
if query_vec.ndim > 1:
query_vec = query_vec.flatten()
# Handle dimension mismatch by truncating to smaller dimension
min_dim = min(len(query_vec), doc_matrix.shape[1])
q = query_vec[:min_dim]
docs = doc_matrix[:, :min_dim]
# Compute query norm once
norm_q = np.linalg.norm(q)
if norm_q == 0:
return np.zeros(docs.shape[0])
# Normalize query
q_normalized = q / norm_q
# Compute document norms (vectorized)
doc_norms = np.linalg.norm(docs, axis=1)
# Avoid division by zero
nonzero_mask = doc_norms > 0
scores = np.zeros(docs.shape[0], dtype=np.float32)
if np.any(nonzero_mask):
# Normalize documents with non-zero norms
docs_normalized = docs[nonzero_mask] / doc_norms[nonzero_mask, np.newaxis]
# Batch dot product: (n_docs, dim) @ (dim,) = (n_docs,)
scores[nonzero_mask] = docs_normalized @ q_normalized
return scores
def _build_results_from_candidates(
self,
candidates: List[Tuple[int, int, Path]],