mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-15 02:42:45 +08:00
refactor: Convert skill-generator from Chinese to English and remove emoji icons
- Convert all markdown files from Chinese to English - Remove all emoji/icon decorations (🔧📋⚙️✅🏁🔍📚⛔⭐) - Update all section headers, descriptions, and documentation - Keep all content logic, structure, code examples unchanged - Maintain template variables and file paths as-is Files converted (9 files total): - SKILL.md: Output structure comments - templates/skill-md.md: All Chinese descriptions and comments - specs/reference-docs-spec.md: All section headers and explanations - phases/01-requirements-discovery.md through 05-validation.md (5 files) - specs/execution-modes.md, skill-requirements.md, cli-integration.md, scripting-integration.md (4 files) - templates/sequential-phase.md, autonomous-orchestrator.md, autonomous-action.md, code-analysis-action.md, llm-action.md, script-template.md (6 files) All 16 files in skill-generator are now fully in English.
This commit is contained in:
@@ -1,56 +1,56 @@
|
||||
# LLM Action Template
|
||||
|
||||
LLM 动作模板,用于在 Skill 中集成 LLM 调用能力。
|
||||
LLM action template for integrating LLM call capabilities into a Skill.
|
||||
|
||||
## Purpose
|
||||
|
||||
为 Skill 生成 LLM 动作,通过 CCW CLI 统一接口调用 Gemini/Qwen/Codex 进行分析或生成。
|
||||
Generate LLM actions for a Skill, call Gemini/Qwen/Codex through CCW CLI unified interface for analysis or generation.
|
||||
|
||||
## Usage Context
|
||||
|
||||
| Phase | Usage |
|
||||
|-------|-------|
|
||||
| Optional | 当 Skill 需要 LLM 能力时使用 |
|
||||
| Generation Trigger | 用户选择添加 llm 动作类型 |
|
||||
| Tools | gemini, qwen, codex (支持 fallback chain) |
|
||||
| Optional | Use when Skill requires LLM capabilities |
|
||||
| Generation Trigger | User selects to add llm action type |
|
||||
| Tools | gemini, qwen, codex (supports fallback chain) |
|
||||
|
||||
---
|
||||
|
||||
## 配置结构
|
||||
## Configuration Structure
|
||||
|
||||
```typescript
|
||||
interface LLMActionConfig {
|
||||
id: string; // "llm-analyze", "llm-generate"
|
||||
name: string; // "LLM Analysis"
|
||||
type: 'llm'; // 动作类型标识
|
||||
type: 'llm'; // Action type identifier
|
||||
|
||||
// LLM 工具配置
|
||||
// LLM tool config
|
||||
tool: {
|
||||
primary: 'gemini' | 'qwen' | 'codex';
|
||||
fallback_chain: string[]; // ['gemini', 'qwen', 'codex']
|
||||
};
|
||||
|
||||
// 执行模式
|
||||
// Execution mode
|
||||
mode: 'analysis' | 'write';
|
||||
|
||||
// 提示词配置
|
||||
// Prompt config
|
||||
prompt: {
|
||||
template: string; // 提示词模板路径或内联
|
||||
variables: string[]; // 需要替换的变量
|
||||
template: string; // Prompt template path or inline
|
||||
variables: string[]; // Variables to replace
|
||||
};
|
||||
|
||||
// 输入输出
|
||||
input: string[]; // 依赖的上下文文件
|
||||
output: string; // 输出文件路径
|
||||
// Input/Output
|
||||
input: string[]; // Dependent context files
|
||||
output: string; // Output file path
|
||||
|
||||
// 超时配置
|
||||
timeout?: number; // 毫秒,默认 600000 (10min)
|
||||
// Timeout config
|
||||
timeout?: number; // Milliseconds, default 600000 (10min)
|
||||
}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
## 模板生成函数
|
||||
## Template Generation Function
|
||||
|
||||
```javascript
|
||||
function generateLLMAction(config) {
|
||||
@@ -61,25 +61,25 @@ function generateLLMAction(config) {
|
||||
|
||||
## Action: ${id}
|
||||
|
||||
### 执行逻辑
|
||||
### Execution Logic
|
||||
|
||||
\`\`\`javascript
|
||||
async function execute${toPascalCase(id)}(context) {
|
||||
const workDir = context.workDir;
|
||||
const state = context.state;
|
||||
|
||||
// 1. 收集输入上下文
|
||||
// 1. Collect input context
|
||||
const inputContext = ${JSON.stringify(input)}.map(f => {
|
||||
const path = \`\${workDir}/\${f}\`;
|
||||
return Read(path);
|
||||
}).join('\\n\\n---\\n\\n');
|
||||
|
||||
// 2. 构建提示词
|
||||
// 2. Build prompt
|
||||
const promptTemplate = \`${prompt.template}\`;
|
||||
const finalPrompt = promptTemplate
|
||||
${prompt.variables.map(v => `.replace('{{${v}}}', context.${v} || '')`).join('\n ')};
|
||||
|
||||
// 3. 执行 LLM 调用 (带 fallback)
|
||||
// 3. Execute LLM call (with fallback)
|
||||
const tools = ['${tool.primary}', ${tool.fallback_chain.map(t => `'${t}'`).join(', ')}];
|
||||
let result = null;
|
||||
let usedTool = null;
|
||||
@@ -98,10 +98,10 @@ async function execute${toPascalCase(id)}(context) {
|
||||
throw new Error('All LLM tools failed');
|
||||
}
|
||||
|
||||
// 4. 保存结果
|
||||
// 4. Save result
|
||||
Write(\`\${workDir}/${output}\`, result);
|
||||
|
||||
// 5. 更新状态
|
||||
// 5. Update state
|
||||
state.llm_calls = (state.llm_calls || 0) + 1;
|
||||
state.last_llm_tool = usedTool;
|
||||
|
||||
@@ -112,38 +112,38 @@ async function execute${toPascalCase(id)}(context) {
|
||||
};
|
||||
}
|
||||
|
||||
// LLM 调用封装
|
||||
// LLM call wrapper
|
||||
async function callLLM(tool, prompt, mode, timeout) {
|
||||
const modeFlag = mode === 'write' ? '--mode write' : '--mode analysis';
|
||||
|
||||
// 使用 CCW CLI 统一接口
|
||||
// Use CCW CLI unified interface
|
||||
const command = \`ccw cli -p "\${escapePrompt(prompt)}" --tool \${tool} \${modeFlag}\`;
|
||||
|
||||
const result = Bash({
|
||||
command,
|
||||
timeout,
|
||||
run_in_background: true // 异步执行
|
||||
run_in_background: true // Async execution
|
||||
});
|
||||
|
||||
// 等待完成
|
||||
// Wait for completion
|
||||
return await waitForResult(result.task_id, timeout);
|
||||
}
|
||||
|
||||
function escapePrompt(prompt) {
|
||||
// 转义双引号和特殊字符
|
||||
// Escape double quotes and special characters
|
||||
return prompt.replace(/"/g, '\\\\"').replace(/\$/g, '\\\\$');
|
||||
}
|
||||
\`\`\`
|
||||
|
||||
### Prompt 模板
|
||||
### Prompt Template
|
||||
|
||||
\`\`\`
|
||||
${prompt.template}
|
||||
\`\`\`
|
||||
|
||||
### 变量说明
|
||||
### Variable Descriptions
|
||||
|
||||
${prompt.variables.map(v => `- \`{{${v}}}\`: ${v} 变量`).join('\n')}
|
||||
${prompt.variables.map(v => `- \`{{${v}}}\`: ${v} variable`).join('\n')}
|
||||
`;
|
||||
}
|
||||
|
||||
@@ -154,11 +154,11 @@ function toPascalCase(str) {
|
||||
|
||||
---
|
||||
|
||||
## 预置 LLM 动作模板
|
||||
## Preset LLM Action Templates
|
||||
|
||||
### 1. 代码分析动作
|
||||
### 1. Code Analysis Action
|
||||
|
||||
```yaml
|
||||
\`\`\`yaml
|
||||
id: llm-code-analysis
|
||||
name: LLM Code Analysis
|
||||
type: llm
|
||||
@@ -168,15 +168,15 @@ tool:
|
||||
mode: analysis
|
||||
prompt:
|
||||
template: |
|
||||
PURPOSE: 分析代码结构和模式,提取关键设计特征
|
||||
PURPOSE: Analyze code structure and patterns, extract key design features
|
||||
TASK:
|
||||
• 识别主要模块和组件
|
||||
• 分析依赖关系
|
||||
• 提取设计模式
|
||||
• 评估代码质量
|
||||
• Identify main modules and components
|
||||
• Analyze dependencies
|
||||
• Extract design patterns
|
||||
• Evaluate code quality
|
||||
MODE: analysis
|
||||
CONTEXT: {{code_context}}
|
||||
EXPECTED: JSON 格式的分析报告,包含 modules, dependencies, patterns, quality_score
|
||||
EXPECTED: JSON formatted analysis report with modules, dependencies, patterns, quality_score
|
||||
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md)
|
||||
variables:
|
||||
- code_context
|
||||
@@ -184,11 +184,11 @@ input:
|
||||
- collected-code.md
|
||||
output: analysis-report.json
|
||||
timeout: 900000
|
||||
```
|
||||
\`\`\`
|
||||
|
||||
### 2. 文档生成动作
|
||||
### 2. Documentation Generation Action
|
||||
|
||||
```yaml
|
||||
\`\`\`yaml
|
||||
id: llm-doc-generation
|
||||
name: LLM Documentation Generation
|
||||
type: llm
|
||||
@@ -198,15 +198,15 @@ tool:
|
||||
mode: write
|
||||
prompt:
|
||||
template: |
|
||||
PURPOSE: 根据分析结果生成高质量文档
|
||||
PURPOSE: Generate high-quality documentation based on analysis results
|
||||
TASK:
|
||||
• 基于分析报告生成文档大纲
|
||||
• 填充各章节内容
|
||||
• 添加代码示例和说明
|
||||
• 生成 Mermaid 图表
|
||||
• Generate documentation outline based on analysis report
|
||||
• Populate chapter content
|
||||
• Add code examples and explanations
|
||||
• Generate Mermaid diagrams
|
||||
MODE: write
|
||||
CONTEXT: {{analysis_report}}
|
||||
EXPECTED: 完整的 Markdown 文档,包含目录、章节、图表
|
||||
EXPECTED: Complete Markdown documentation with table of contents, chapters, diagrams
|
||||
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/write-protocol.md)
|
||||
variables:
|
||||
- analysis_report
|
||||
@@ -214,11 +214,11 @@ input:
|
||||
- analysis-report.json
|
||||
output: generated-doc.md
|
||||
timeout: 1200000
|
||||
```
|
||||
\`\`\`
|
||||
|
||||
### 3. 代码重构建议动作
|
||||
### 3. Code Refactoring Suggestions Action
|
||||
|
||||
```yaml
|
||||
\`\`\`yaml
|
||||
id: llm-refactor-suggest
|
||||
name: LLM Refactoring Suggestions
|
||||
type: llm
|
||||
@@ -228,15 +228,15 @@ tool:
|
||||
mode: analysis
|
||||
prompt:
|
||||
template: |
|
||||
PURPOSE: 分析代码并提供重构建议
|
||||
PURPOSE: Analyze code and provide refactoring suggestions
|
||||
TASK:
|
||||
• 识别代码异味 (code smells)
|
||||
• 评估复杂度热点
|
||||
• 提出具体重构方案
|
||||
• 估算重构影响范围
|
||||
• Identify code smells
|
||||
• Evaluate complexity hotspots
|
||||
• Propose specific refactoring plans
|
||||
• Estimate refactoring impact scope
|
||||
MODE: analysis
|
||||
CONTEXT: {{source_code}}
|
||||
EXPECTED: 重构建议列表,每项包含 location, issue, suggestion, impact
|
||||
EXPECTED: List of refactoring suggestions with location, issue, suggestion, impact fields
|
||||
RULES: $(cat ~/.claude/workflows/cli-templates/protocols/analysis-protocol.md)
|
||||
variables:
|
||||
- source_code
|
||||
@@ -244,15 +244,15 @@ input:
|
||||
- source-files.md
|
||||
output: refactor-suggestions.json
|
||||
timeout: 600000
|
||||
```
|
||||
\`\`\`
|
||||
|
||||
---
|
||||
|
||||
## 使用示例
|
||||
## Usage Examples
|
||||
|
||||
### 在 Phase 中使用 LLM 动作
|
||||
### Using LLM Actions in Phase
|
||||
|
||||
```javascript
|
||||
\`\`\`javascript
|
||||
// phases/02-llm-analysis.md
|
||||
|
||||
const llmConfig = {
|
||||
@@ -265,39 +265,39 @@ const llmConfig = {
|
||||
},
|
||||
mode: 'analysis',
|
||||
prompt: {
|
||||
template: `
|
||||
PURPOSE: 分析现有 Skill 的设计模式
|
||||
template: \`
|
||||
PURPOSE: Analyze design patterns of existing Skills
|
||||
TASK:
|
||||
• 提取 Skill 结构规范
|
||||
• 识别 Phase 组织模式
|
||||
• 分析 Agent 调用模式
|
||||
• Extract Skill structure specification
|
||||
• Identify Phase organization patterns
|
||||
• Analyze Agent invocation patterns
|
||||
MODE: analysis
|
||||
CONTEXT: {{skill_source}}
|
||||
EXPECTED: 结构化的设计模式分析
|
||||
`,
|
||||
EXPECTED: Structured design pattern analysis
|
||||
\`,
|
||||
variables: ['skill_source']
|
||||
},
|
||||
input: ['collected-skills.md'],
|
||||
output: 'skill-patterns.json'
|
||||
};
|
||||
|
||||
// 执行
|
||||
// Execute
|
||||
const result = await executeLLMAction(llmConfig, {
|
||||
workDir: '.workflow/.scratchpad/skill-gen-xxx',
|
||||
skill_source: Read('.workflow/.scratchpad/skill-gen-xxx/collected-skills.md')
|
||||
});
|
||||
```
|
||||
\`\`\`
|
||||
|
||||
### 在 Orchestrator 中调度 LLM 动作
|
||||
### Scheduling LLM Actions in Orchestrator
|
||||
|
||||
```javascript
|
||||
// autonomous-orchestrator 中的 LLM 动作调度
|
||||
\`\`\`javascript
|
||||
// Schedule LLM actions in autonomous-orchestrator
|
||||
|
||||
const actions = [
|
||||
{ type: 'collect', priority: 100 },
|
||||
{ type: 'llm', id: 'llm-analyze', priority: 90 }, // LLM 分析
|
||||
{ type: 'llm', id: 'llm-analyze', priority: 90 }, // LLM analysis
|
||||
{ type: 'process', priority: 80 },
|
||||
{ type: 'llm', id: 'llm-generate', priority: 70 }, // LLM 生成
|
||||
{ type: 'llm', id: 'llm-generate', priority: 70 }, // LLM generation
|
||||
{ type: 'validate', priority: 60 }
|
||||
];
|
||||
|
||||
@@ -310,13 +310,13 @@ for (const action of sortByPriority(actions)) {
|
||||
context.state[action.id] = llmResult;
|
||||
}
|
||||
}
|
||||
```
|
||||
\`\`\`
|
||||
|
||||
---
|
||||
|
||||
## 错误处理
|
||||
## Error Handling
|
||||
|
||||
```javascript
|
||||
\`\`\`javascript
|
||||
async function executeLLMActionWithRetry(config, context, maxRetries = 3) {
|
||||
let lastError = null;
|
||||
|
||||
@@ -325,43 +325,43 @@ async function executeLLMActionWithRetry(config, context, maxRetries = 3) {
|
||||
return await executeLLMAction(config, context);
|
||||
} catch (error) {
|
||||
lastError = error;
|
||||
console.log(`Attempt ${attempt} failed: ${error.message}`);
|
||||
console.log(\`Attempt ${attempt} failed: ${error.message}\`);
|
||||
|
||||
// 指数退避
|
||||
// Exponential backoff
|
||||
if (attempt < maxRetries) {
|
||||
await sleep(Math.pow(2, attempt) * 1000);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// 所有重试失败
|
||||
// All retries failed
|
||||
return {
|
||||
success: false,
|
||||
error: lastError.message,
|
||||
fallback: 'manual_review_required'
|
||||
};
|
||||
}
|
||||
```
|
||||
\`\`\`
|
||||
|
||||
---
|
||||
|
||||
## 最佳实践
|
||||
## Best Practices
|
||||
|
||||
1. **选择合适的工具**
|
||||
- 分析任务:Gemini(大上下文)> Qwen
|
||||
- 生成任务:Codex(自主执行)> Gemini > Qwen
|
||||
- 代码修改:Codex > Gemini
|
||||
1. **Select Appropriate Tool**
|
||||
- Analysis tasks: Gemini (large context) > Qwen
|
||||
- Generation tasks: Codex (autonomous execution) > Gemini > Qwen
|
||||
- Code modification: Codex > Gemini
|
||||
|
||||
2. **配置 Fallback Chain**
|
||||
- 总是配置至少一个 fallback
|
||||
- 考虑工具特性选择 fallback 顺序
|
||||
2. **Configure Fallback Chain**
|
||||
- Always configure at least one fallback
|
||||
- Consider tool characteristics when ordering fallbacks
|
||||
|
||||
3. **超时设置**
|
||||
- 分析任务:10-15 分钟
|
||||
- 生成任务:15-20 分钟
|
||||
- 复杂任务:20-60 分钟
|
||||
3. **Timeout Settings**
|
||||
- Analysis tasks: 10-15 minutes
|
||||
- Generation tasks: 15-20 minutes
|
||||
- Complex tasks: 20-60 minutes
|
||||
|
||||
4. **提示词设计**
|
||||
- 使用 PURPOSE/TASK/MODE/CONTEXT/EXPECTED/RULES 结构
|
||||
- 引用标准协议模板
|
||||
- 明确输出格式要求
|
||||
4. **Prompt Design**
|
||||
- Use PURPOSE/TASK/MODE/CONTEXT/EXPECTED/RULES structure
|
||||
- Reference standard protocol templates
|
||||
- Clearly specify output format requirements
|
||||
|
||||
Reference in New Issue
Block a user