Refactor CLI Config Manager and Add Provider Model Routes

- Removed deprecated constants and functions from cli-config-manager.ts.
- Introduced new provider model presets in litellm-provider-models.ts for better organization and management of model information.
- Created provider-routes.ts to handle API endpoints for retrieving provider information and models.
- Added integration tests for provider routes to ensure correct functionality and response structure.
- Implemented unit tests for settings persistence functions, covering various scenarios and edge cases.
- Enhanced error handling and validation in the new routes and settings functions.
This commit is contained in:
catlog22
2026-01-25 17:27:58 +08:00
parent 7c16cc6427
commit 985085c624
13 changed files with 1252 additions and 300 deletions

View File

@@ -0,0 +1,222 @@
/**
* Provider Model Presets
*
* Predefined model information for each supported LLM provider.
* Used for UI dropdowns and validation.
*/
import type { ProviderType } from '../types/litellm-api-config.js';
/**
* Model information metadata
*/
export interface ModelInfo {
/** Model identifier (used in API calls) */
id: string;
/** Human-readable display name */
name: string;
/** Context window size in tokens */
contextWindow: number;
/** Whether this model supports prompt caching */
supportsCaching: boolean;
}
/**
* Embedding model information metadata
*/
export interface EmbeddingModelInfo {
/** Model identifier (used in API calls) */
id: string;
/** Human-readable display name */
name: string;
/** Embedding dimensions */
dimensions: number;
/** Maximum input tokens */
maxTokens: number;
/** Provider identifier */
provider: string;
}
/**
* Predefined models for each API format
* Used for UI selection and validation
* Note: Most providers use OpenAI-compatible format
*/
export const PROVIDER_MODELS: Record<ProviderType, ModelInfo[]> = {
// OpenAI-compatible format (used by OpenAI, DeepSeek, Ollama, etc.)
openai: [
{
id: 'gpt-4o',
name: 'GPT-4o',
contextWindow: 128000,
supportsCaching: true
},
{
id: 'gpt-4o-mini',
name: 'GPT-4o Mini',
contextWindow: 128000,
supportsCaching: true
},
{
id: 'o1',
name: 'O1',
contextWindow: 200000,
supportsCaching: true
},
{
id: 'deepseek-chat',
name: 'DeepSeek Chat',
contextWindow: 64000,
supportsCaching: false
},
{
id: 'deepseek-coder',
name: 'DeepSeek Coder',
contextWindow: 64000,
supportsCaching: false
},
{
id: 'llama3.2',
name: 'Llama 3.2',
contextWindow: 128000,
supportsCaching: false
},
{
id: 'qwen2.5-coder',
name: 'Qwen 2.5 Coder',
contextWindow: 32000,
supportsCaching: false
}
],
// Anthropic format
anthropic: [
{
id: 'claude-sonnet-4-20250514',
name: 'Claude Sonnet 4',
contextWindow: 200000,
supportsCaching: true
},
{
id: 'claude-3-5-sonnet-20241022',
name: 'Claude 3.5 Sonnet',
contextWindow: 200000,
supportsCaching: true
},
{
id: 'claude-3-5-haiku-20241022',
name: 'Claude 3.5 Haiku',
contextWindow: 200000,
supportsCaching: true
},
{
id: 'claude-3-opus-20240229',
name: 'Claude 3 Opus',
contextWindow: 200000,
supportsCaching: false
}
],
// Custom format
custom: [
{
id: 'custom-model',
name: 'Custom Model',
contextWindow: 128000,
supportsCaching: false
}
]
};
/**
* Get models for a specific provider
* @param providerType - Provider type to get models for
* @returns Array of model information
*/
export function getModelsForProvider(providerType: ProviderType): ModelInfo[] {
return PROVIDER_MODELS[providerType] || [];
}
/**
* Predefined embedding models for each API format
* Used for UI selection and validation
*/
export const EMBEDDING_MODELS: Record<ProviderType, EmbeddingModelInfo[]> = {
// OpenAI embedding models
openai: [
{
id: 'text-embedding-3-small',
name: 'Text Embedding 3 Small',
dimensions: 1536,
maxTokens: 8191,
provider: 'openai'
},
{
id: 'text-embedding-3-large',
name: 'Text Embedding 3 Large',
dimensions: 3072,
maxTokens: 8191,
provider: 'openai'
},
{
id: 'text-embedding-ada-002',
name: 'Ada 002',
dimensions: 1536,
maxTokens: 8191,
provider: 'openai'
}
],
// Anthropic doesn't have embedding models
anthropic: [],
// Custom embedding models
custom: [
{
id: 'custom-embedding',
name: 'Custom Embedding',
dimensions: 1536,
maxTokens: 8192,
provider: 'custom'
}
]
};
/**
* Get embedding models for a specific provider
* @param providerType - Provider type to get embedding models for
* @returns Array of embedding model information
*/
export function getEmbeddingModelsForProvider(providerType: ProviderType): EmbeddingModelInfo[] {
return EMBEDDING_MODELS[providerType] || [];
}
/**
* Get model information by ID within a provider
* @param providerType - Provider type
* @param modelId - Model identifier
* @returns Model information or undefined if not found
*/
export function getModelInfo(providerType: ProviderType, modelId: string): ModelInfo | undefined {
const models = PROVIDER_MODELS[providerType] || [];
return models.find(m => m.id === modelId);
}
/**
* Validate if a model ID is supported by a provider
* @param providerType - Provider type
* @param modelId - Model identifier to validate
* @returns true if model is valid for provider
*/
export function isValidModel(providerType: ProviderType, modelId: string): boolean {
return getModelInfo(providerType, modelId) !== undefined;
}

View File

@@ -1,222 +1,123 @@
/**
* Provider Model Presets
* CLI Tool Model Reference Library
*
* Predefined model information for each supported LLM provider.
* Used for UI dropdowns and validation.
* System reference for available models per CLI tool provider.
* This is a read-only reference, NOT user configuration.
* User configuration is managed via tools.{tool}.primaryModel/secondaryModel in cli-tools.json
*/
import type { ProviderType } from '../types/litellm-api-config.js';
/**
* Model information metadata
*/
export interface ModelInfo {
/** Model identifier (used in API calls) */
export interface ProviderModelInfo {
id: string;
/** Human-readable display name */
name: string;
capabilities?: string[];
contextWindow?: number;
deprecated?: boolean;
}
/** Context window size in tokens */
contextWindow: number;
/** Whether this model supports prompt caching */
supportsCaching: boolean;
export interface ProviderInfo {
name: string;
models: ProviderModelInfo[];
}
/**
* Embedding model information metadata
* System reference for CLI tool models
* Maps provider names to their available models
*/
export interface EmbeddingModelInfo {
/** Model identifier (used in API calls) */
id: string;
/** Human-readable display name */
name: string;
/** Embedding dimensions */
dimensions: number;
/** Maximum input tokens */
maxTokens: number;
/** Provider identifier */
provider: string;
}
/**
* Predefined models for each API format
* Used for UI selection and validation
* Note: Most providers use OpenAI-compatible format
*/
export const PROVIDER_MODELS: Record<ProviderType, ModelInfo[]> = {
// OpenAI-compatible format (used by OpenAI, DeepSeek, Ollama, etc.)
openai: [
{
id: 'gpt-4o',
name: 'GPT-4o',
contextWindow: 128000,
supportsCaching: true
},
{
id: 'gpt-4o-mini',
name: 'GPT-4o Mini',
contextWindow: 128000,
supportsCaching: true
},
{
id: 'o1',
name: 'O1',
contextWindow: 200000,
supportsCaching: true
},
{
id: 'deepseek-chat',
name: 'DeepSeek Chat',
contextWindow: 64000,
supportsCaching: false
},
{
id: 'deepseek-coder',
name: 'DeepSeek Coder',
contextWindow: 64000,
supportsCaching: false
},
{
id: 'llama3.2',
name: 'Llama 3.2',
contextWindow: 128000,
supportsCaching: false
},
{
id: 'qwen2.5-coder',
name: 'Qwen 2.5 Coder',
contextWindow: 32000,
supportsCaching: false
}
],
// Anthropic format
anthropic: [
{
id: 'claude-sonnet-4-20250514',
name: 'Claude Sonnet 4',
contextWindow: 200000,
supportsCaching: true
},
{
id: 'claude-3-5-sonnet-20241022',
name: 'Claude 3.5 Sonnet',
contextWindow: 200000,
supportsCaching: true
},
{
id: 'claude-3-5-haiku-20241022',
name: 'Claude 3.5 Haiku',
contextWindow: 200000,
supportsCaching: true
},
{
id: 'claude-3-opus-20240229',
name: 'Claude 3 Opus',
contextWindow: 200000,
supportsCaching: false
}
],
// Custom format
custom: [
{
id: 'custom-model',
name: 'Custom Model',
contextWindow: 128000,
supportsCaching: false
}
]
};
export const PROVIDER_MODELS: Record<string, ProviderInfo> = {
google: {
name: 'Google AI',
models: [
{ id: 'gemini-2.5-pro', name: 'Gemini 2.5 Pro', capabilities: ['text', 'vision', 'code'], contextWindow: 1000000 },
{ id: 'gemini-2.5-flash', name: 'Gemini 2.5 Flash', capabilities: ['text', 'code'], contextWindow: 1000000 },
{ id: 'gemini-2.0-flash', name: 'Gemini 2.0 Flash', capabilities: ['text'], contextWindow: 1000000 },
{ id: 'gemini-1.5-pro', name: 'Gemini 1.5 Pro', capabilities: ['text', 'vision'], contextWindow: 2000000 },
{ id: 'gemini-1.5-flash', name: 'Gemini 1.5 Flash', capabilities: ['text'], contextWindow: 1000000 }
]
},
qwen: {
name: 'Qwen',
models: [
{ id: 'coder-model', name: 'Qwen Coder', capabilities: ['code'] },
{ id: 'vision-model', name: 'Qwen Vision', capabilities: ['vision'] },
{ id: 'qwen2.5-coder-32b', name: 'Qwen 2.5 Coder 32B', capabilities: ['code'] }
]
},
openai: {
name: 'OpenAI',
models: [
{ id: 'gpt-5.2', name: 'GPT-5.2', capabilities: ['text', 'code'] },
{ id: 'gpt-4.1', name: 'GPT-4.1', capabilities: ['text', 'code'] },
{ id: 'o4-mini', name: 'O4 Mini', capabilities: ['text'] },
{ id: 'o3', name: 'O3', capabilities: ['text'] }
]
},
anthropic: {
name: 'Anthropic',
models: [
{ id: 'sonnet', name: 'Claude Sonnet', capabilities: ['text', 'code'] },
{ id: 'opus', name: 'Claude Opus', capabilities: ['text', 'code', 'vision'] },
{ id: 'haiku', name: 'Claude Haiku', capabilities: ['text'] },
{ id: 'claude-sonnet-4-5-20250929', name: 'Claude 4.5 Sonnet (2025-09-29)', capabilities: ['text', 'code'] },
{ id: 'claude-opus-4-5-20251101', name: 'Claude 4.5 Opus (2025-11-01)', capabilities: ['text', 'code', 'vision'] }
]
},
litellm: {
name: 'LiteLLM Aggregator',
models: [
{ id: 'opencode/glm-4.7-free', name: 'GLM-4.7 Free', capabilities: ['text'] },
{ id: 'opencode/gpt-5-nano', name: 'GPT-5 Nano', capabilities: ['text'] },
{ id: 'opencode/grok-code', name: 'Grok Code', capabilities: ['code'] },
{ id: 'opencode/minimax-m2.1-free', name: 'MiniMax M2.1 Free', capabilities: ['text'] },
{ id: 'anthropic/claude-sonnet-4-20250514', name: 'Claude Sonnet 4 (via LiteLLM)', capabilities: ['text'] },
{ id: 'anthropic/claude-opus-4-20250514', name: 'Claude Opus 4 (via LiteLLM)', capabilities: ['text'] },
{ id: 'openai/gpt-4.1', name: 'GPT-4.1 (via LiteLLM)', capabilities: ['text'] },
{ id: 'openai/o3', name: 'O3 (via LiteLLM)', capabilities: ['text'] },
{ id: 'google/gemini-2.5-pro', name: 'Gemini 2.5 Pro (via LiteLLM)', capabilities: ['text'] },
{ id: 'google/gemini-2.5-flash', name: 'Gemini 2.5 Flash (via LiteLLM)', capabilities: ['text'] }
]
}
} as const;
/**
* Get models for a specific provider
* @param providerType - Provider type to get models for
* @param provider - Provider name (e.g., 'google', 'qwen', 'openai', 'anthropic', 'litellm')
* @returns Array of model information
*/
export function getModelsForProvider(providerType: ProviderType): ModelInfo[] {
return PROVIDER_MODELS[providerType] || [];
export function getProviderModels(provider: string): ProviderModelInfo[] {
return PROVIDER_MODELS[provider]?.models || [];
}
/**
* Predefined embedding models for each API format
* Used for UI selection and validation
* Get all provider names
* @returns Array of provider names
*/
export const EMBEDDING_MODELS: Record<ProviderType, EmbeddingModelInfo[]> = {
// OpenAI embedding models
openai: [
{
id: 'text-embedding-3-small',
name: 'Text Embedding 3 Small',
dimensions: 1536,
maxTokens: 8191,
provider: 'openai'
},
{
id: 'text-embedding-3-large',
name: 'Text Embedding 3 Large',
dimensions: 3072,
maxTokens: 8191,
provider: 'openai'
},
{
id: 'text-embedding-ada-002',
name: 'Ada 002',
dimensions: 1536,
maxTokens: 8191,
provider: 'openai'
}
],
// Anthropic doesn't have embedding models
anthropic: [],
// Custom embedding models
custom: [
{
id: 'custom-embedding',
name: 'Custom Embedding',
dimensions: 1536,
maxTokens: 8192,
provider: 'custom'
}
]
};
/**
* Get embedding models for a specific provider
* @param providerType - Provider type to get embedding models for
* @returns Array of embedding model information
*/
export function getEmbeddingModelsForProvider(providerType: ProviderType): EmbeddingModelInfo[] {
return EMBEDDING_MODELS[providerType] || [];
export function getAllProviders(): string[] {
return Object.keys(PROVIDER_MODELS);
}
/**
* Get model information by ID within a provider
* @param providerType - Provider type
* @param modelId - Model identifier
* Find model information across all providers
* @param modelId - Model identifier to search for
* @returns Model information or undefined if not found
*/
export function getModelInfo(providerType: ProviderType, modelId: string): ModelInfo | undefined {
const models = PROVIDER_MODELS[providerType] || [];
return models.find(m => m.id === modelId);
export function findModelInfo(modelId: string): ProviderModelInfo | undefined {
for (const provider of Object.values(PROVIDER_MODELS)) {
const model = provider.models.find(m => m.id === modelId);
if (model) return model;
}
return undefined;
}
/**
* Validate if a model ID is supported by a provider
* @param providerType - Provider type
* @param modelId - Model identifier to validate
* @returns true if model is valid for provider
* Get provider name for a model ID
* @param modelId - Model identifier
* @returns Provider name or undefined if not found
*/
export function isValidModel(providerType: ProviderType, modelId: string): boolean {
return getModelInfo(providerType, modelId) !== undefined;
export function getProviderForModel(modelId: string): string | undefined {
for (const [providerId, provider] of Object.entries(PROVIDER_MODELS)) {
if (provider.models.some(m => m.id === modelId)) {
return providerId;
}
}
return undefined;
}

View File

@@ -8,7 +8,7 @@
import { homedir } from 'os';
import { join, resolve, dirname, relative, sep } from 'path';
import { createHash } from 'crypto';
import { existsSync, mkdirSync, renameSync, rmSync, readdirSync } from 'fs';
import { existsSync, mkdirSync, renameSync, rmSync, readdirSync, cpSync } from 'fs';
import { readdir } from 'fs/promises';
// Environment variable override for custom storage location
@@ -211,14 +211,29 @@ function migrateToHierarchical(legacyDir: string, targetDir: string): void {
const target = join(targetDir, subDir);
if (existsSync(source)) {
// Use atomic rename (same filesystem)
// Try atomic rename first (fastest, same filesystem)
try {
renameSync(source, target);
console.log(` ✓ 迁移 ${subDir}`);
} catch (error: any) {
// If rename fails (cross-filesystem), fallback to copy-delete
// For now, we'll just throw the error
throw new Error(`无法迁移 ${subDir}: ${error.message}`);
// If rename fails (EPERM, cross-filesystem, etc.), fallback to copy-delete
if (error.code === 'EPERM' || error.code === 'EXDEV' || error.code === 'EBUSY') {
try {
console.log(` ⚠️ rename 失败,使用 copy-delete 方式迁移 ${subDir}...`);
cpSync(source, target, { recursive: true, force: true });
// Verify copy succeeded before deleting source
if (existsSync(target)) {
rmSync(source, { recursive: true, force: true });
console.log(` ✓ 迁移 ${subDir} (copy-delete)`);
} else {
throw new Error('复制失败:目标目录不存在');
}
} catch (copyError: any) {
throw new Error(`无法迁移 ${subDir}: ${copyError.message}`);
}
} else {
throw new Error(`无法迁移 ${subDir}: ${error.message}`);
}
}
}
}