mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-15 02:42:45 +08:00
feat: 添加需求分析功能,支持维度拆解、覆盖度评估和歧义检测
This commit is contained in:
@@ -0,0 +1,436 @@
|
||||
# Action: Analyze Requirements
|
||||
|
||||
将用户问题描述拆解为多个分析维度,匹配 Spec,评估覆盖度,检测歧义。
|
||||
|
||||
## Purpose
|
||||
|
||||
- 将单一用户描述拆解为多个独立关注维度
|
||||
- 为每个维度匹配 problem-taxonomy(检测)+ tuning-strategies(修复)
|
||||
- 以"有修复策略"为标准判断是否满足需求
|
||||
- 检测歧义并在必要时请求用户澄清
|
||||
|
||||
## Preconditions
|
||||
|
||||
- [ ] `state.status === 'running'`
|
||||
- [ ] `state.target_skill !== null`
|
||||
- [ ] `state.completed_actions.includes('action-init')`
|
||||
- [ ] `!state.completed_actions.includes('action-analyze-requirements')`
|
||||
|
||||
## Execution
|
||||
|
||||
### Phase 1: 维度拆解 (Gemini CLI)
|
||||
|
||||
调用 Gemini 对用户描述进行语义分析,拆解为独立维度:
|
||||
|
||||
```javascript
|
||||
async function analyzeDimensions(state, workDir) {
|
||||
const prompt = `
|
||||
PURPOSE: 分析用户问题描述,拆解为独立的关注维度
|
||||
TASK:
|
||||
• 识别用户描述中的多个关注点(每个关注点应该是独立的、可单独分析的)
|
||||
• 为每个关注点提取关键词(中英文均可)
|
||||
• 推断可能的问题类别:
|
||||
- context_explosion: 上下文/Token 相关
|
||||
- memory_loss: 遗忘/约束丢失相关
|
||||
- dataflow_break: 状态/数据流相关
|
||||
- agent_failure: Agent/子任务相关
|
||||
- prompt_quality: 提示词/输出质量相关
|
||||
- architecture: 架构/结构相关
|
||||
- performance: 性能/效率相关
|
||||
- error_handling: 错误/异常处理相关
|
||||
- output_quality: 输出质量/验证相关
|
||||
- user_experience: 交互/体验相关
|
||||
• 评估推断置信度 (0-1)
|
||||
|
||||
INPUT:
|
||||
User description: ${state.user_issue_description}
|
||||
Target skill: ${state.target_skill.name}
|
||||
Skill structure: ${JSON.stringify(state.target_skill.phases)}
|
||||
|
||||
MODE: analysis
|
||||
CONTEXT: @specs/problem-taxonomy.md @specs/dimension-mapping.md
|
||||
EXPECTED: JSON (不要包含 markdown 代码块标记)
|
||||
{
|
||||
"dimensions": [
|
||||
{
|
||||
"id": "DIM-001",
|
||||
"description": "关注点的简短描述",
|
||||
"keywords": ["关键词1", "关键词2"],
|
||||
"inferred_category": "问题类别",
|
||||
"confidence": 0.85,
|
||||
"reasoning": "推断理由"
|
||||
}
|
||||
],
|
||||
"analysis_notes": "整体分析说明"
|
||||
}
|
||||
RULES:
|
||||
- 每个维度必须独立,不重叠
|
||||
- 低于 0.5 置信度的推断应标注需要澄清
|
||||
- 如果用户描述非常模糊,至少提取一个 "general" 维度
|
||||
`;
|
||||
|
||||
const cliCommand = `ccw cli -p "${escapeForShell(prompt)}" --tool gemini --mode analysis --cd "${state.target_skill.path}"`;
|
||||
|
||||
console.log('Phase 1: 执行 Gemini 维度拆解分析...');
|
||||
|
||||
const result = Bash({
|
||||
command: cliCommand,
|
||||
run_in_background: true,
|
||||
timeout: 300000
|
||||
});
|
||||
|
||||
return result;
|
||||
}
|
||||
```
|
||||
|
||||
### Phase 2: Spec 匹配
|
||||
|
||||
基于 `specs/dimension-mapping.md` 规则为每个维度匹配检测模式和修复策略:
|
||||
|
||||
```javascript
|
||||
function matchSpecs(dimensions) {
|
||||
// 加载映射规则
|
||||
const mappingRules = loadMappingRules();
|
||||
|
||||
return dimensions.map(dim => {
|
||||
// 匹配 taxonomy pattern
|
||||
const taxonomyMatch = findTaxonomyMatch(dim.inferred_category, mappingRules);
|
||||
|
||||
// 匹配 strategy
|
||||
const strategyMatch = findStrategyMatch(dim.inferred_category, mappingRules);
|
||||
|
||||
// 判断是否满足(核心标准:有修复策略)
|
||||
const hasFix = strategyMatch !== null && strategyMatch.strategies.length > 0;
|
||||
|
||||
return {
|
||||
dimension_id: dim.id,
|
||||
taxonomy_match: taxonomyMatch,
|
||||
strategy_match: strategyMatch,
|
||||
has_fix: hasFix,
|
||||
needs_gemini_analysis: taxonomyMatch === null // 无内置检测时需要 Gemini 深度分析
|
||||
};
|
||||
});
|
||||
}
|
||||
|
||||
function findTaxonomyMatch(category, rules) {
|
||||
const patternMapping = {
|
||||
'context_explosion': { category: 'context_explosion', pattern_ids: ['CTX-001', 'CTX-002', 'CTX-003', 'CTX-004', 'CTX-005'], severity_hint: 'high' },
|
||||
'memory_loss': { category: 'memory_loss', pattern_ids: ['MEM-001', 'MEM-002', 'MEM-003', 'MEM-004', 'MEM-005'], severity_hint: 'high' },
|
||||
'dataflow_break': { category: 'dataflow_break', pattern_ids: ['DF-001', 'DF-002', 'DF-003', 'DF-004', 'DF-005'], severity_hint: 'critical' },
|
||||
'agent_failure': { category: 'agent_failure', pattern_ids: ['AGT-001', 'AGT-002', 'AGT-003', 'AGT-004', 'AGT-005', 'AGT-006'], severity_hint: 'high' },
|
||||
'performance': { category: 'performance', pattern_ids: ['CTX-001', 'CTX-003'], severity_hint: 'medium' },
|
||||
'error_handling': { category: 'error_handling', pattern_ids: ['AGT-001', 'AGT-002'], severity_hint: 'medium' }
|
||||
};
|
||||
|
||||
return patternMapping[category] || null;
|
||||
}
|
||||
|
||||
function findStrategyMatch(category, rules) {
|
||||
const strategyMapping = {
|
||||
'context_explosion': { strategies: ['sliding_window', 'path_reference', 'context_summarization', 'structured_state'], risk_levels: ['low', 'low', 'low', 'medium'] },
|
||||
'memory_loss': { strategies: ['constraint_injection', 'state_constraints_field', 'checkpoint_restore', 'goal_embedding'], risk_levels: ['low', 'low', 'low', 'medium'] },
|
||||
'dataflow_break': { strategies: ['state_centralization', 'schema_enforcement', 'field_normalization'], risk_levels: ['medium', 'low', 'low'] },
|
||||
'agent_failure': { strategies: ['error_wrapping', 'result_validation', 'flatten_nesting'], risk_levels: ['low', 'low', 'medium'] },
|
||||
'prompt_quality': { strategies: ['structured_prompt', 'output_schema', 'grounding_context', 'format_enforcement'], risk_levels: ['low', 'low', 'medium', 'low'] },
|
||||
'architecture': { strategies: ['phase_decomposition', 'interface_contracts', 'plugin_architecture'], risk_levels: ['medium', 'medium', 'high'] },
|
||||
'performance': { strategies: ['token_budgeting', 'parallel_execution', 'result_caching', 'lazy_loading'], risk_levels: ['low', 'low', 'low', 'low'] },
|
||||
'error_handling': { strategies: ['graceful_degradation', 'error_propagation', 'structured_logging'], risk_levels: ['low', 'low', 'low'] },
|
||||
'output_quality': { strategies: ['quality_gates', 'output_validation', 'template_enforcement'], risk_levels: ['low', 'low', 'low'] },
|
||||
'user_experience': { strategies: ['progress_tracking', 'status_communication', 'interactive_checkpoints'], risk_levels: ['low', 'low', 'low'] }
|
||||
};
|
||||
|
||||
// Fallback to custom
|
||||
return strategyMapping[category] || { strategies: ['custom'], risk_levels: ['medium'] };
|
||||
}
|
||||
```
|
||||
|
||||
### Phase 3: 覆盖度评估
|
||||
|
||||
评估所有维度的 Spec 覆盖情况:
|
||||
|
||||
```javascript
|
||||
function evaluateCoverage(specMatches) {
|
||||
const total = specMatches.length;
|
||||
const withDetection = specMatches.filter(m => m.taxonomy_match !== null).length;
|
||||
const withFix = specMatches.filter(m => m.has_fix).length;
|
||||
|
||||
const rate = total > 0 ? Math.round((withFix / total) * 100) : 0;
|
||||
|
||||
let status;
|
||||
if (rate >= 80) {
|
||||
status = 'satisfied';
|
||||
} else if (rate >= 50) {
|
||||
status = 'partial';
|
||||
} else {
|
||||
status = 'unsatisfied';
|
||||
}
|
||||
|
||||
return {
|
||||
total_dimensions: total,
|
||||
with_detection: withDetection,
|
||||
with_fix_strategy: withFix,
|
||||
coverage_rate: rate,
|
||||
status: status
|
||||
};
|
||||
}
|
||||
```
|
||||
|
||||
### Phase 4: 歧义检测
|
||||
|
||||
识别需要用户澄清的歧义点:
|
||||
|
||||
```javascript
|
||||
function detectAmbiguities(dimensions, specMatches) {
|
||||
const ambiguities = [];
|
||||
|
||||
for (const dim of dimensions) {
|
||||
const match = specMatches.find(m => m.dimension_id === dim.id);
|
||||
|
||||
// 检测1: 低置信度 (< 0.5)
|
||||
if (dim.confidence < 0.5) {
|
||||
ambiguities.push({
|
||||
dimension_id: dim.id,
|
||||
type: 'vague_description',
|
||||
description: `维度 "${dim.description}" 描述模糊,推断置信度低 (${dim.confidence})`,
|
||||
possible_interpretations: suggestInterpretations(dim),
|
||||
needs_clarification: true
|
||||
});
|
||||
}
|
||||
|
||||
// 检测2: 无匹配类别
|
||||
if (!match || (!match.taxonomy_match && !match.strategy_match)) {
|
||||
ambiguities.push({
|
||||
dimension_id: dim.id,
|
||||
type: 'no_category_match',
|
||||
description: `维度 "${dim.description}" 无法匹配到已知问题类别`,
|
||||
possible_interpretations: ['custom'],
|
||||
needs_clarification: true
|
||||
});
|
||||
}
|
||||
|
||||
// 检测3: 关键词冲突(可能属于多个类别)
|
||||
if (dim.keywords.length > 3 && hasConflictingKeywords(dim.keywords)) {
|
||||
ambiguities.push({
|
||||
dimension_id: dim.id,
|
||||
type: 'conflicting_keywords',
|
||||
description: `维度 "${dim.description}" 的关键词可能指向多个不同问题`,
|
||||
possible_interpretations: inferMultipleCategories(dim.keywords),
|
||||
needs_clarification: true
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return ambiguities;
|
||||
}
|
||||
|
||||
function suggestInterpretations(dim) {
|
||||
// 基于关键词推荐可能的解释
|
||||
const categories = [
|
||||
'context_explosion', 'memory_loss', 'dataflow_break', 'agent_failure',
|
||||
'prompt_quality', 'architecture', 'performance', 'error_handling'
|
||||
];
|
||||
return categories.slice(0, 4); // 返回最常见的 4 个作为选项
|
||||
}
|
||||
|
||||
function hasConflictingKeywords(keywords) {
|
||||
// 检查关键词是否指向不同方向
|
||||
const categoryHints = keywords.map(k => getKeywordCategoryHint(k));
|
||||
const uniqueCategories = [...new Set(categoryHints.filter(c => c))];
|
||||
return uniqueCategories.length > 1;
|
||||
}
|
||||
|
||||
function getKeywordCategoryHint(keyword) {
|
||||
const keywordMap = {
|
||||
'慢': 'performance', 'slow': 'performance',
|
||||
'遗忘': 'memory_loss', 'forget': 'memory_loss',
|
||||
'状态': 'dataflow_break', 'state': 'dataflow_break',
|
||||
'agent': 'agent_failure', '失败': 'agent_failure',
|
||||
'token': 'context_explosion', '上下文': 'context_explosion'
|
||||
};
|
||||
return keywordMap[keyword.toLowerCase()];
|
||||
}
|
||||
```
|
||||
|
||||
## User Interaction
|
||||
|
||||
如果检测到需要澄清的歧义,暂停并询问用户:
|
||||
|
||||
```javascript
|
||||
async function handleAmbiguities(ambiguities, dimensions) {
|
||||
const needsClarification = ambiguities.filter(a => a.needs_clarification);
|
||||
|
||||
if (needsClarification.length === 0) {
|
||||
return null; // 无需澄清
|
||||
}
|
||||
|
||||
const questions = needsClarification.slice(0, 4).map(a => {
|
||||
const dim = dimensions.find(d => d.id === a.dimension_id);
|
||||
|
||||
return {
|
||||
question: `关于 "${dim.description}",您具体指的是?`,
|
||||
header: a.dimension_id,
|
||||
options: a.possible_interpretations.map(interp => ({
|
||||
label: getCategoryLabel(interp),
|
||||
description: getCategoryDescription(interp)
|
||||
})),
|
||||
multiSelect: false
|
||||
};
|
||||
});
|
||||
|
||||
return await AskUserQuestion({ questions });
|
||||
}
|
||||
|
||||
function getCategoryLabel(category) {
|
||||
const labels = {
|
||||
'context_explosion': '上下文膨胀',
|
||||
'memory_loss': '指令遗忘',
|
||||
'dataflow_break': '数据流问题',
|
||||
'agent_failure': 'Agent 协调问题',
|
||||
'prompt_quality': '提示词质量',
|
||||
'architecture': '架构问题',
|
||||
'performance': '性能问题',
|
||||
'error_handling': '错误处理',
|
||||
'custom': '其他问题'
|
||||
};
|
||||
return labels[category] || category;
|
||||
}
|
||||
|
||||
function getCategoryDescription(category) {
|
||||
const descriptions = {
|
||||
'context_explosion': 'Token 累积导致上下文过大',
|
||||
'memory_loss': '早期指令或约束在后期丢失',
|
||||
'dataflow_break': '状态数据在阶段间不一致',
|
||||
'agent_failure': '子 Agent 调用失败或结果异常',
|
||||
'prompt_quality': '提示词模糊导致输出不稳定',
|
||||
'architecture': '阶段划分或模块结构不合理',
|
||||
'performance': '执行慢或 Token 消耗高',
|
||||
'error_handling': '错误恢复机制不完善',
|
||||
'custom': '需要自定义分析的问题'
|
||||
};
|
||||
return descriptions[category] || '需要进一步分析';
|
||||
}
|
||||
```
|
||||
|
||||
## Output
|
||||
|
||||
### State Updates
|
||||
|
||||
```javascript
|
||||
return {
|
||||
stateUpdates: {
|
||||
requirement_analysis: {
|
||||
status: ambiguities.some(a => a.needs_clarification) ? 'needs_clarification' : 'completed',
|
||||
analyzed_at: new Date().toISOString(),
|
||||
dimensions: dimensions,
|
||||
spec_matches: specMatches,
|
||||
coverage: coverageResult,
|
||||
ambiguities: ambiguities
|
||||
},
|
||||
// 根据分析结果自动优化 focus_areas
|
||||
focus_areas: deriveOptimalFocusAreas(specMatches)
|
||||
},
|
||||
outputFiles: [
|
||||
`${workDir}/requirement-analysis.json`,
|
||||
`${workDir}/requirement-analysis.md`
|
||||
],
|
||||
summary: generateSummary(dimensions, coverageResult, ambiguities)
|
||||
};
|
||||
|
||||
function deriveOptimalFocusAreas(specMatches) {
|
||||
const coreCategories = ['context', 'memory', 'dataflow', 'agent'];
|
||||
const matched = specMatches
|
||||
.filter(m => m.taxonomy_match !== null)
|
||||
.map(m => {
|
||||
// 映射到诊断 focus_area
|
||||
const category = m.taxonomy_match.category;
|
||||
if (category === 'context_explosion' || category === 'performance') return 'context';
|
||||
if (category === 'memory_loss') return 'memory';
|
||||
if (category === 'dataflow_break') return 'dataflow';
|
||||
if (category === 'agent_failure' || category === 'error_handling') return 'agent';
|
||||
return null;
|
||||
})
|
||||
.filter(f => f && coreCategories.includes(f));
|
||||
|
||||
// 去重
|
||||
return [...new Set(matched)];
|
||||
}
|
||||
|
||||
function generateSummary(dimensions, coverage, ambiguities) {
|
||||
const dimCount = dimensions.length;
|
||||
const coverageStatus = coverage.status;
|
||||
const ambiguityCount = ambiguities.filter(a => a.needs_clarification).length;
|
||||
|
||||
let summary = `分析完成:${dimCount} 个维度`;
|
||||
summary += `,覆盖度 ${coverage.coverage_rate}% (${coverageStatus})`;
|
||||
|
||||
if (ambiguityCount > 0) {
|
||||
summary += `,${ambiguityCount} 个歧义点待澄清`;
|
||||
}
|
||||
|
||||
return summary;
|
||||
}
|
||||
```
|
||||
|
||||
### Output Files
|
||||
|
||||
#### requirement-analysis.json
|
||||
|
||||
```json
|
||||
{
|
||||
"timestamp": "2024-01-01T00:00:00Z",
|
||||
"target_skill": "skill-name",
|
||||
"user_description": "原始用户描述",
|
||||
"dimensions": [...],
|
||||
"spec_matches": [...],
|
||||
"coverage": {...},
|
||||
"ambiguities": [...],
|
||||
"derived_focus_areas": [...]
|
||||
}
|
||||
```
|
||||
|
||||
#### requirement-analysis.md
|
||||
|
||||
```markdown
|
||||
# 需求分析报告
|
||||
|
||||
## 用户描述
|
||||
> ${user_issue_description}
|
||||
|
||||
## 维度拆解
|
||||
|
||||
| ID | 描述 | 类别 | 置信度 |
|
||||
|----|------|------|--------|
|
||||
| DIM-001 | ... | ... | 0.85 |
|
||||
|
||||
## Spec 匹配
|
||||
|
||||
| 维度 | 检测模式 | 修复策略 | 是否满足 |
|
||||
|------|----------|----------|----------|
|
||||
| DIM-001 | CTX-001,002 | sliding_window | ✓ |
|
||||
|
||||
## 覆盖度评估
|
||||
|
||||
- 总维度数: N
|
||||
- 有检测手段: M
|
||||
- 有修复策略: K (满足标准)
|
||||
- 覆盖率: X%
|
||||
- 状态: satisfied/partial/unsatisfied
|
||||
|
||||
## 歧义点
|
||||
|
||||
(如有)
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
| Error | Recovery |
|
||||
|-------|----------|
|
||||
| Gemini CLI 超时 | 重试一次,仍失败则使用简化分析 |
|
||||
| JSON 解析失败 | 尝试修复 JSON 或使用默认维度 |
|
||||
| 无法匹配任何类别 | 全部归类为 custom,触发 Gemini 深度分析 |
|
||||
|
||||
## Next Actions
|
||||
|
||||
- 如果 `requirement_analysis.status === 'completed'`: 继续到 `action-diagnose-*`
|
||||
- 如果 `requirement_analysis.status === 'needs_clarification'`: 等待用户澄清后重新执行
|
||||
- 如果 `coverage.status === 'unsatisfied'`: 自动触发 `action-gemini-analysis` 进行深度分析
|
||||
@@ -63,6 +63,24 @@ function selectNextAction(state) {
|
||||
return 'action-init';
|
||||
}
|
||||
|
||||
// 1.5. Requirement analysis (在 init 后,diagnosis 前)
|
||||
if (state.status === 'running' &&
|
||||
state.completed_actions.includes('action-init') &&
|
||||
!state.completed_actions.includes('action-analyze-requirements')) {
|
||||
return 'action-analyze-requirements';
|
||||
}
|
||||
|
||||
// 1.6. 如果需求分析发现歧义需要澄清,暂停等待用户
|
||||
if (state.requirement_analysis?.status === 'needs_clarification') {
|
||||
return null; // 等待用户澄清后继续
|
||||
}
|
||||
|
||||
// 1.7. 如果需求分析覆盖度不足,优先触发 Gemini 深度分析
|
||||
if (state.requirement_analysis?.coverage?.status === 'unsatisfied' &&
|
||||
!state.completed_actions.includes('action-gemini-analysis')) {
|
||||
return 'action-gemini-analysis';
|
||||
}
|
||||
|
||||
// 2. Check if Gemini analysis is requested or needed
|
||||
if (shouldTriggerGeminiAnalysis(state)) {
|
||||
return 'action-gemini-analysis';
|
||||
@@ -295,6 +313,7 @@ After completing the action:
|
||||
| Action | Purpose | Preconditions | Effects |
|
||||
|--------|---------|---------------|---------|
|
||||
| [action-init](actions/action-init.md) | Initialize tuning session | status === 'pending' | Creates work dirs, backup, sets status='running' |
|
||||
| [action-analyze-requirements](actions/action-analyze-requirements.md) | Analyze user requirements | init completed | Sets requirement_analysis, optimizes focus_areas |
|
||||
| [action-diagnose-context](actions/action-diagnose-context.md) | Analyze context explosion | status === 'running' | Sets diagnosis.context |
|
||||
| [action-diagnose-memory](actions/action-diagnose-memory.md) | Analyze long-tail forgetting | status === 'running' | Sets diagnosis.memory |
|
||||
| [action-diagnose-dataflow](actions/action-diagnose-dataflow.md) | Analyze data flow issues | status === 'running' | Sets diagnosis.dataflow |
|
||||
@@ -312,6 +331,7 @@ After completing the action:
|
||||
- `status === 'completed'`: Normal completion
|
||||
- `status === 'user_exit'`: User requested exit
|
||||
- `status === 'failed'`: Unrecoverable error
|
||||
- `requirement_analysis.status === 'needs_clarification'`: Waiting for user clarification (暂停,非终止)
|
||||
- `error_count >= max_errors`: Too many errors (default: 3)
|
||||
- `iteration_count >= max_iterations`: Max iterations reached (default: 5)
|
||||
- `quality_gate === 'pass'`: All quality criteria met
|
||||
|
||||
@@ -67,6 +67,62 @@ interface TuningState {
|
||||
// === Output Paths ===
|
||||
work_dir: string;
|
||||
backup_dir: string;
|
||||
|
||||
// === Requirement Analysis (新增) ===
|
||||
requirement_analysis: RequirementAnalysis | null;
|
||||
}
|
||||
|
||||
interface RequirementAnalysis {
|
||||
status: 'pending' | 'completed' | 'needs_clarification';
|
||||
analyzed_at: string;
|
||||
|
||||
// Phase 1: 维度拆解
|
||||
dimensions: Dimension[];
|
||||
|
||||
// Phase 2: Spec 匹配
|
||||
spec_matches: SpecMatch[];
|
||||
|
||||
// Phase 3: 覆盖度
|
||||
coverage: {
|
||||
total_dimensions: number;
|
||||
with_detection: number; // 有 taxonomy pattern
|
||||
with_fix_strategy: number; // 有 tuning strategy (满足判断标准)
|
||||
coverage_rate: number; // 0-100%
|
||||
status: 'satisfied' | 'partial' | 'unsatisfied';
|
||||
};
|
||||
|
||||
// Phase 4: 歧义
|
||||
ambiguities: Ambiguity[];
|
||||
}
|
||||
|
||||
interface Dimension {
|
||||
id: string; // e.g., "DIM-001"
|
||||
description: string; // 关注点描述
|
||||
keywords: string[]; // 关键词
|
||||
inferred_category: string; // 推断的问题类别
|
||||
confidence: number; // 置信度 0-1
|
||||
}
|
||||
|
||||
interface SpecMatch {
|
||||
dimension_id: string;
|
||||
taxonomy_match: {
|
||||
category: string; // e.g., "context_explosion"
|
||||
pattern_ids: string[]; // e.g., ["CTX-001", "CTX-003"]
|
||||
severity_hint: string;
|
||||
} | null;
|
||||
strategy_match: {
|
||||
strategies: string[]; // e.g., ["sliding_window", "path_reference"]
|
||||
risk_levels: string[];
|
||||
} | null;
|
||||
has_fix: boolean; // 满足性判断核心
|
||||
}
|
||||
|
||||
interface Ambiguity {
|
||||
dimension_id: string;
|
||||
type: 'multi_category' | 'vague_description' | 'conflicting_keywords';
|
||||
description: string;
|
||||
possible_interpretations: string[];
|
||||
needs_clarification: boolean;
|
||||
}
|
||||
|
||||
interface DiagnosisResult {
|
||||
@@ -208,7 +264,8 @@ interface ErrorEntry {
|
||||
"error_count": 0,
|
||||
"max_errors": 3,
|
||||
"work_dir": null,
|
||||
"backup_dir": null
|
||||
"backup_dir": null,
|
||||
"requirement_analysis": null
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
Reference in New Issue
Block a user