feat(codexlens): add CodexLens code indexing platform with incremental updates

- Add CodexLens Python package with SQLite FTS5 search and tree-sitter parsing
- Implement workspace-local index storage (.codexlens/ directory)
- Add incremental update CLI command for efficient file-level index refresh
- Integrate CodexLens with CCW tools (codex_lens action: update)
- Add CodexLens Auto-Sync hook template for automatic index updates on file changes
- Add CodexLens status card in CCW Dashboard CLI Manager with install/init buttons
- Add server APIs: /api/codexlens/status, /api/codexlens/bootstrap, /api/codexlens/init

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
catlog22
2025-12-12 15:02:32 +08:00
parent b74a90b416
commit a393601ec5
31 changed files with 2718 additions and 27 deletions

View File

@@ -0,0 +1,31 @@
"""Optional semantic search module for CodexLens.
Install with: pip install codexlens[semantic]
"""
from __future__ import annotations
SEMANTIC_AVAILABLE = False
_import_error: str | None = None
try:
import numpy as np
try:
from fastembed import TextEmbedding
SEMANTIC_BACKEND = "fastembed"
except ImportError:
try:
from sentence_transformers import SentenceTransformer
SEMANTIC_BACKEND = "sentence-transformers"
except ImportError:
raise ImportError("Neither fastembed nor sentence-transformers available")
SEMANTIC_AVAILABLE = True
except ImportError as e:
_import_error = str(e)
SEMANTIC_BACKEND = None
def check_semantic_available() -> tuple[bool, str | None]:
"""Check if semantic search dependencies are available."""
return SEMANTIC_AVAILABLE, _import_error
__all__ = ["SEMANTIC_AVAILABLE", "SEMANTIC_BACKEND", "check_semantic_available"]

View File

@@ -0,0 +1,130 @@
"""Code chunking strategies for semantic search."""
from __future__ import annotations
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional
from codexlens.entities import SemanticChunk, Symbol
@dataclass
class ChunkConfig:
"""Configuration for chunking strategies."""
max_chunk_size: int = 1000 # Max characters per chunk
overlap: int = 100 # Overlap for sliding window
min_chunk_size: int = 50 # Minimum chunk size
class Chunker:
"""Chunk code files for semantic embedding."""
def __init__(self, config: ChunkConfig | None = None) -> None:
self.config = config or ChunkConfig()
def chunk_by_symbol(
self,
content: str,
symbols: List[Symbol],
file_path: str | Path,
language: str,
) -> List[SemanticChunk]:
"""Chunk code by extracted symbols (functions, classes).
Each symbol becomes one chunk with its full content.
"""
chunks: List[SemanticChunk] = []
lines = content.splitlines(keepends=True)
for symbol in symbols:
start_line, end_line = symbol.range
# Convert to 0-indexed
start_idx = max(0, start_line - 1)
end_idx = min(len(lines), end_line)
chunk_content = "".join(lines[start_idx:end_idx])
if len(chunk_content.strip()) < self.config.min_chunk_size:
continue
chunks.append(SemanticChunk(
content=chunk_content,
embedding=None,
metadata={
"file": str(file_path),
"language": language,
"symbol_name": symbol.name,
"symbol_kind": symbol.kind,
"start_line": start_line,
"end_line": end_line,
"strategy": "symbol",
}
))
return chunks
def chunk_sliding_window(
self,
content: str,
file_path: str | Path,
language: str,
) -> List[SemanticChunk]:
"""Chunk code using sliding window approach.
Used for files without clear symbol boundaries or very long functions.
"""
chunks: List[SemanticChunk] = []
lines = content.splitlines(keepends=True)
if not lines:
return chunks
# Calculate lines per chunk based on average line length
avg_line_len = len(content) / max(len(lines), 1)
lines_per_chunk = max(10, int(self.config.max_chunk_size / max(avg_line_len, 1)))
overlap_lines = max(2, int(self.config.overlap / max(avg_line_len, 1)))
start = 0
chunk_idx = 0
while start < len(lines):
end = min(start + lines_per_chunk, len(lines))
chunk_content = "".join(lines[start:end])
if len(chunk_content.strip()) >= self.config.min_chunk_size:
chunks.append(SemanticChunk(
content=chunk_content,
embedding=None,
metadata={
"file": str(file_path),
"language": language,
"chunk_index": chunk_idx,
"start_line": start + 1,
"end_line": end,
"strategy": "sliding_window",
}
))
chunk_idx += 1
# Move window, accounting for overlap
start = end - overlap_lines
if start >= len(lines) - overlap_lines:
break
return chunks
def chunk_file(
self,
content: str,
symbols: List[Symbol],
file_path: str | Path,
language: str,
) -> List[SemanticChunk]:
"""Chunk a file using the best strategy.
Uses symbol-based chunking if symbols available,
falls back to sliding window for files without symbols.
"""
if symbols:
return self.chunk_by_symbol(content, symbols, file_path, language)
return self.chunk_sliding_window(content, file_path, language)

View File

@@ -0,0 +1,67 @@
"""Embedder for semantic code search."""
from __future__ import annotations
from typing import Iterable, List
from . import SEMANTIC_AVAILABLE, SEMANTIC_BACKEND
if SEMANTIC_AVAILABLE:
import numpy as np
class Embedder:
"""Generate embeddings for code chunks using fastembed or sentence-transformers."""
MODEL_NAME = "BAAI/bge-small-en-v1.5"
EMBEDDING_DIM = 384
def __init__(self, model_name: str | None = None) -> None:
if not SEMANTIC_AVAILABLE:
raise ImportError(
"Semantic search dependencies not available. "
"Install with: pip install codexlens[semantic]"
)
self.model_name = model_name or self.MODEL_NAME
self._model = None
self._backend = SEMANTIC_BACKEND
def _load_model(self) -> None:
"""Lazy load the embedding model."""
if self._model is not None:
return
if self._backend == "fastembed":
from fastembed import TextEmbedding
self._model = TextEmbedding(model_name=self.model_name)
else:
from sentence_transformers import SentenceTransformer
self._model = SentenceTransformer(self.model_name)
def embed(self, texts: str | Iterable[str]) -> List[List[float]]:
"""Generate embeddings for one or more texts.
Args:
texts: Single text or iterable of texts to embed.
Returns:
List of embedding vectors (each is a list of floats).
"""
self._load_model()
if isinstance(texts, str):
texts = [texts]
else:
texts = list(texts)
if self._backend == "fastembed":
embeddings = list(self._model.embed(texts))
return [emb.tolist() for emb in embeddings]
else:
embeddings = self._model.encode(texts)
return embeddings.tolist()
def embed_single(self, text: str) -> List[float]:
"""Generate embedding for a single text."""
return self.embed(text)[0]

View File

@@ -0,0 +1,166 @@
"""Vector storage and similarity search for semantic chunks."""
from __future__ import annotations
import json
import sqlite3
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
from codexlens.entities import SearchResult, SemanticChunk
from codexlens.errors import StorageError
from . import SEMANTIC_AVAILABLE
if SEMANTIC_AVAILABLE:
import numpy as np
def _cosine_similarity(a: List[float], b: List[float]) -> float:
"""Compute cosine similarity between two vectors."""
if not SEMANTIC_AVAILABLE:
raise ImportError("numpy required for vector operations")
a_arr = np.array(a)
b_arr = np.array(b)
norm_a = np.linalg.norm(a_arr)
norm_b = np.linalg.norm(b_arr)
if norm_a == 0 or norm_b == 0:
return 0.0
return float(np.dot(a_arr, b_arr) / (norm_a * norm_b))
class VectorStore:
"""SQLite-based vector storage with cosine similarity search."""
def __init__(self, db_path: str | Path) -> None:
if not SEMANTIC_AVAILABLE:
raise ImportError(
"Semantic search dependencies not available. "
"Install with: pip install codexlens[semantic]"
)
self.db_path = Path(db_path)
self.db_path.parent.mkdir(parents=True, exist_ok=True)
self._init_schema()
def _init_schema(self) -> None:
"""Initialize vector storage schema."""
with sqlite3.connect(self.db_path) as conn:
conn.execute("""
CREATE TABLE IF NOT EXISTS semantic_chunks (
id INTEGER PRIMARY KEY AUTOINCREMENT,
file_path TEXT NOT NULL,
content TEXT NOT NULL,
embedding BLOB NOT NULL,
metadata TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.execute("""
CREATE INDEX IF NOT EXISTS idx_chunks_file
ON semantic_chunks(file_path)
""")
conn.commit()
def add_chunk(self, chunk: SemanticChunk, file_path: str) -> int:
"""Add a single chunk with its embedding.
Returns:
The inserted chunk ID.
"""
if chunk.embedding is None:
raise ValueError("Chunk must have embedding before adding to store")
embedding_blob = np.array(chunk.embedding, dtype=np.float32).tobytes()
metadata_json = json.dumps(chunk.metadata) if chunk.metadata else None
with sqlite3.connect(self.db_path) as conn:
cursor = conn.execute(
"""
INSERT INTO semantic_chunks (file_path, content, embedding, metadata)
VALUES (?, ?, ?, ?)
""",
(file_path, chunk.content, embedding_blob, metadata_json)
)
conn.commit()
return cursor.lastrowid or 0
def add_chunks(self, chunks: List[SemanticChunk], file_path: str) -> List[int]:
"""Add multiple chunks with embeddings.
Returns:
List of inserted chunk IDs.
"""
ids = []
for chunk in chunks:
ids.append(self.add_chunk(chunk, file_path))
return ids
def delete_file_chunks(self, file_path: str) -> int:
"""Delete all chunks for a file.
Returns:
Number of deleted chunks.
"""
with sqlite3.connect(self.db_path) as conn:
cursor = conn.execute(
"DELETE FROM semantic_chunks WHERE file_path = ?",
(file_path,)
)
conn.commit()
return cursor.rowcount
def search_similar(
self,
query_embedding: List[float],
top_k: int = 10,
min_score: float = 0.0,
) -> List[SearchResult]:
"""Find chunks most similar to query embedding.
Args:
query_embedding: Query vector.
top_k: Maximum results to return.
min_score: Minimum similarity score (0-1).
Returns:
List of SearchResult ordered by similarity (highest first).
"""
results: List[Tuple[float, SearchResult]] = []
with sqlite3.connect(self.db_path) as conn:
rows = conn.execute(
"SELECT id, file_path, content, embedding, metadata FROM semantic_chunks"
).fetchall()
for row_id, file_path, content, embedding_blob, metadata_json in rows:
stored_embedding = np.frombuffer(embedding_blob, dtype=np.float32).tolist()
score = _cosine_similarity(query_embedding, stored_embedding)
if score >= min_score:
metadata = json.loads(metadata_json) if metadata_json else {}
# Build excerpt
excerpt = content[:200] + "..." if len(content) > 200 else content
results.append((score, SearchResult(
path=file_path,
score=score,
excerpt=excerpt,
symbol=None,
)))
# Sort by score descending
results.sort(key=lambda x: x[0], reverse=True)
return [r for _, r in results[:top_k]]
def count_chunks(self) -> int:
"""Count total chunks in store."""
with sqlite3.connect(self.db_path) as conn:
row = conn.execute("SELECT COUNT(*) FROM semantic_chunks").fetchone()
return row[0] if row else 0