feat(codexlens): add CodexLens code indexing platform with incremental updates

- Add CodexLens Python package with SQLite FTS5 search and tree-sitter parsing
- Implement workspace-local index storage (.codexlens/ directory)
- Add incremental update CLI command for efficient file-level index refresh
- Integrate CodexLens with CCW tools (codex_lens action: update)
- Add CodexLens Auto-Sync hook template for automatic index updates on file changes
- Add CodexLens status card in CCW Dashboard CLI Manager with install/init buttons
- Add server APIs: /api/codexlens/status, /api/codexlens/bootstrap, /api/codexlens/init

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
This commit is contained in:
catlog22
2025-12-12 15:02:32 +08:00
parent b74a90b416
commit a393601ec5
31 changed files with 2718 additions and 27 deletions

View File

@@ -0,0 +1,130 @@
"""Code chunking strategies for semantic search."""
from __future__ import annotations
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional
from codexlens.entities import SemanticChunk, Symbol
@dataclass
class ChunkConfig:
"""Configuration for chunking strategies."""
max_chunk_size: int = 1000 # Max characters per chunk
overlap: int = 100 # Overlap for sliding window
min_chunk_size: int = 50 # Minimum chunk size
class Chunker:
"""Chunk code files for semantic embedding."""
def __init__(self, config: ChunkConfig | None = None) -> None:
self.config = config or ChunkConfig()
def chunk_by_symbol(
self,
content: str,
symbols: List[Symbol],
file_path: str | Path,
language: str,
) -> List[SemanticChunk]:
"""Chunk code by extracted symbols (functions, classes).
Each symbol becomes one chunk with its full content.
"""
chunks: List[SemanticChunk] = []
lines = content.splitlines(keepends=True)
for symbol in symbols:
start_line, end_line = symbol.range
# Convert to 0-indexed
start_idx = max(0, start_line - 1)
end_idx = min(len(lines), end_line)
chunk_content = "".join(lines[start_idx:end_idx])
if len(chunk_content.strip()) < self.config.min_chunk_size:
continue
chunks.append(SemanticChunk(
content=chunk_content,
embedding=None,
metadata={
"file": str(file_path),
"language": language,
"symbol_name": symbol.name,
"symbol_kind": symbol.kind,
"start_line": start_line,
"end_line": end_line,
"strategy": "symbol",
}
))
return chunks
def chunk_sliding_window(
self,
content: str,
file_path: str | Path,
language: str,
) -> List[SemanticChunk]:
"""Chunk code using sliding window approach.
Used for files without clear symbol boundaries or very long functions.
"""
chunks: List[SemanticChunk] = []
lines = content.splitlines(keepends=True)
if not lines:
return chunks
# Calculate lines per chunk based on average line length
avg_line_len = len(content) / max(len(lines), 1)
lines_per_chunk = max(10, int(self.config.max_chunk_size / max(avg_line_len, 1)))
overlap_lines = max(2, int(self.config.overlap / max(avg_line_len, 1)))
start = 0
chunk_idx = 0
while start < len(lines):
end = min(start + lines_per_chunk, len(lines))
chunk_content = "".join(lines[start:end])
if len(chunk_content.strip()) >= self.config.min_chunk_size:
chunks.append(SemanticChunk(
content=chunk_content,
embedding=None,
metadata={
"file": str(file_path),
"language": language,
"chunk_index": chunk_idx,
"start_line": start + 1,
"end_line": end,
"strategy": "sliding_window",
}
))
chunk_idx += 1
# Move window, accounting for overlap
start = end - overlap_lines
if start >= len(lines) - overlap_lines:
break
return chunks
def chunk_file(
self,
content: str,
symbols: List[Symbol],
file_path: str | Path,
language: str,
) -> List[SemanticChunk]:
"""Chunk a file using the best strategy.
Uses symbol-based chunking if symbols available,
falls back to sliding window for files without symbols.
"""
if symbols:
return self.chunk_by_symbol(content, symbols, file_path, language)
return self.chunk_sliding_window(content, file_path, language)