feat: Enhance embedding management and model configuration

- Updated embedding_manager.py to include backend parameter in model configuration.
- Modified model_manager.py to utilize cache_name for ONNX models.
- Refactored hybrid_search.py to improve embedder initialization based on backend type.
- Added backend column to vector_store.py for better model configuration management.
- Implemented migration for existing database to include backend information.
- Enhanced API settings implementation with comprehensive provider and endpoint management.
- Introduced LiteLLM integration guide detailing configuration and usage.
- Added examples for LiteLLM usage in TypeScript.
This commit is contained in:
catlog22
2025-12-24 14:03:59 +08:00
parent 9b926d1a1e
commit b00113d212
22 changed files with 5507 additions and 706 deletions

View File

@@ -309,7 +309,7 @@ def generate_embeddings(
# Set/update model configuration for this index
vector_store.set_model_config(
model_profile, embedder.model_name, embedder.embedding_dim
model_profile, embedder.model_name, embedder.embedding_dim, backend=embedding_backend
)
# Use bulk insert mode for efficient batch ANN index building
# This defers ANN updates until end_bulk_insert() is called