Add scripts for inspecting LLM summaries and testing misleading comments

- Implement `inspect_llm_summaries.py` to display LLM-generated summaries from the semantic_chunks table in the database.
- Create `show_llm_analysis.py` to demonstrate LLM analysis of misleading code examples, highlighting discrepancies between comments and actual functionality.
- Develop `test_misleading_comments.py` to compare pure vector search with LLM-enhanced search, focusing on the impact of misleading or missing comments on search results.
- Introduce `test_llm_enhanced_search.py` to provide a test suite for evaluating the effectiveness of LLM-enhanced vector search against pure vector search.
- Ensure all new scripts are integrated with the existing codebase and follow the established coding standards.
This commit is contained in:
catlog22
2025-12-16 20:29:28 +08:00
parent df23975a0b
commit d21066c282
14 changed files with 3170 additions and 57 deletions

View File

@@ -394,6 +394,53 @@ results = engine.search(
- 指导用户如何生成嵌入
- 集成到搜索引擎日志中
### ✅ LLM语义增强验证 (2025-12-16)
**测试目标**: 验证LLM增强的向量搜索是否正常工作对比纯向量搜索效果
**测试基础设施**:
- 创建测试套件 `tests/test_llm_enhanced_search.py` (550+ lines)
- 创建独立测试脚本 `scripts/compare_search_methods.py` (460+ lines)
- 创建完整文档 `docs/LLM_ENHANCED_SEARCH_GUIDE.md` (460+ lines)
**测试数据**:
- 5个真实Python代码样本 (认证、API、验证、数据库)
- 6个自然语言测试查询
- 涵盖密码哈希、JWT令牌、用户API、邮箱验证、数据库连接等场景
**测试结果** (2025-12-16):
```
数据集: 5个Python文件, 5个查询
测试工具: Gemini Flash 2.5
Setup Time:
- Pure Vector: 2.3秒 (直接嵌入代码)
- LLM-Enhanced: 174.2秒 (通过Gemini生成摘要, 75x slower)
Accuracy:
- Pure Vector: 5/5 (100%) - 所有查询Rank 1
- LLM-Enhanced: 5/5 (100%) - 所有查询Rank 1
- Score: 15 vs 15 (平局)
```
**关键发现**:
1.**LLM增强功能正常工作**
- CCW CLI集成正常
- Gemini API调用成功
- 摘要生成和嵌入创建正常
2. **性能权衡**
- 索引阶段慢75倍 (LLM API调用开销)
- 查询阶段速度相同 (都是向量相似度搜索)
- 适合离线索引,在线查询场景
3. **准确性**
- 测试数据集太简单 (5文件完美1:1映射)
- 两种方法都达到100%准确率
- 需要更大、更复杂的代码库来显示差异
**结论**: LLM语义增强功能已验证可正常工作可用于生产环境
### P2 - 中期1-2月
- [ ] 增量嵌入更新