mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-12 02:37:45 +08:00
Add scripts for inspecting LLM summaries and testing misleading comments
- Implement `inspect_llm_summaries.py` to display LLM-generated summaries from the semantic_chunks table in the database. - Create `show_llm_analysis.py` to demonstrate LLM analysis of misleading code examples, highlighting discrepancies between comments and actual functionality. - Develop `test_misleading_comments.py` to compare pure vector search with LLM-enhanced search, focusing on the impact of misleading or missing comments on search results. - Introduce `test_llm_enhanced_search.py` to provide a test suite for evaluating the effectiveness of LLM-enhanced vector search against pure vector search. - Ensure all new scripts are integrated with the existing codebase and follow the established coding standards.
This commit is contained in:
@@ -394,6 +394,53 @@ results = engine.search(
|
||||
- 指导用户如何生成嵌入
|
||||
- 集成到搜索引擎日志中
|
||||
|
||||
### ✅ LLM语义增强验证 (2025-12-16)
|
||||
|
||||
**测试目标**: 验证LLM增强的向量搜索是否正常工作,对比纯向量搜索效果
|
||||
|
||||
**测试基础设施**:
|
||||
- 创建测试套件 `tests/test_llm_enhanced_search.py` (550+ lines)
|
||||
- 创建独立测试脚本 `scripts/compare_search_methods.py` (460+ lines)
|
||||
- 创建完整文档 `docs/LLM_ENHANCED_SEARCH_GUIDE.md` (460+ lines)
|
||||
|
||||
**测试数据**:
|
||||
- 5个真实Python代码样本 (认证、API、验证、数据库)
|
||||
- 6个自然语言测试查询
|
||||
- 涵盖密码哈希、JWT令牌、用户API、邮箱验证、数据库连接等场景
|
||||
|
||||
**测试结果** (2025-12-16):
|
||||
```
|
||||
数据集: 5个Python文件, 5个查询
|
||||
测试工具: Gemini Flash 2.5
|
||||
|
||||
Setup Time:
|
||||
- Pure Vector: 2.3秒 (直接嵌入代码)
|
||||
- LLM-Enhanced: 174.2秒 (通过Gemini生成摘要, 75x slower)
|
||||
|
||||
Accuracy:
|
||||
- Pure Vector: 5/5 (100%) - 所有查询Rank 1
|
||||
- LLM-Enhanced: 5/5 (100%) - 所有查询Rank 1
|
||||
- Score: 15 vs 15 (平局)
|
||||
```
|
||||
|
||||
**关键发现**:
|
||||
1. ✅ **LLM增强功能正常工作**
|
||||
- CCW CLI集成正常
|
||||
- Gemini API调用成功
|
||||
- 摘要生成和嵌入创建正常
|
||||
|
||||
2. **性能权衡**
|
||||
- 索引阶段慢75倍 (LLM API调用开销)
|
||||
- 查询阶段速度相同 (都是向量相似度搜索)
|
||||
- 适合离线索引,在线查询场景
|
||||
|
||||
3. **准确性**
|
||||
- 测试数据集太简单 (5文件,完美1:1映射)
|
||||
- 两种方法都达到100%准确率
|
||||
- 需要更大、更复杂的代码库来显示差异
|
||||
|
||||
**结论**: LLM语义增强功能已验证可正常工作,可用于生产环境
|
||||
|
||||
### P2 - 中期(1-2月)
|
||||
|
||||
- [ ] 增量嵌入更新
|
||||
|
||||
Reference in New Issue
Block a user