mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-05 01:50:27 +08:00
Add scripts for inspecting LLM summaries and testing misleading comments
- Implement `inspect_llm_summaries.py` to display LLM-generated summaries from the semantic_chunks table in the database. - Create `show_llm_analysis.py` to demonstrate LLM analysis of misleading code examples, highlighting discrepancies between comments and actual functionality. - Develop `test_misleading_comments.py` to compare pure vector search with LLM-enhanced search, focusing on the impact of misleading or missing comments on search results. - Introduce `test_llm_enhanced_search.py` to provide a test suite for evaluating the effectiveness of LLM-enhanced vector search against pure vector search. - Ensure all new scripts are integrated with the existing codebase and follow the established coding standards.
This commit is contained in:
545
codex-lens/tests/test_llm_enhanced_search.py
Normal file
545
codex-lens/tests/test_llm_enhanced_search.py
Normal file
@@ -0,0 +1,545 @@
|
||||
"""Test suite for comparing pure vector search vs LLM-enhanced vector search.
|
||||
|
||||
This test demonstrates the difference between:
|
||||
1. Pure vector search: Raw code → fastembed → vector search
|
||||
2. LLM-enhanced search: Code → LLM summary → fastembed → vector search
|
||||
|
||||
LLM-enhanced search should provide better semantic matches for natural language queries.
|
||||
"""
|
||||
|
||||
import pytest
|
||||
import sqlite3
|
||||
import tempfile
|
||||
from pathlib import Path
|
||||
from typing import Dict, List
|
||||
|
||||
from codexlens.search.hybrid_search import HybridSearchEngine
|
||||
from codexlens.storage.dir_index import DirIndexStore
|
||||
|
||||
# Check semantic dependencies
|
||||
try:
|
||||
from codexlens.semantic import SEMANTIC_AVAILABLE
|
||||
from codexlens.semantic.embedder import Embedder
|
||||
from codexlens.semantic.vector_store import VectorStore
|
||||
from codexlens.semantic.chunker import Chunker, ChunkConfig
|
||||
from codexlens.semantic.llm_enhancer import (
|
||||
LLMEnhancer,
|
||||
LLMConfig,
|
||||
FileData,
|
||||
EnhancedSemanticIndexer,
|
||||
SemanticChunk,
|
||||
)
|
||||
from codexlens.entities import SearchResult
|
||||
except ImportError:
|
||||
SEMANTIC_AVAILABLE = False
|
||||
|
||||
|
||||
# Test code samples representing different functionality
|
||||
TEST_CODE_SAMPLES = {
|
||||
"auth/password_hasher.py": '''"""Password hashing utilities using bcrypt."""
|
||||
import bcrypt
|
||||
|
||||
def hash_password(password: str, salt_rounds: int = 12) -> str:
|
||||
"""Hash a password using bcrypt with specified salt rounds.
|
||||
|
||||
Args:
|
||||
password: Plain text password to hash
|
||||
salt_rounds: Number of salt rounds (default 12)
|
||||
|
||||
Returns:
|
||||
Hashed password string
|
||||
"""
|
||||
salt = bcrypt.gensalt(rounds=salt_rounds)
|
||||
hashed = bcrypt.hashpw(password.encode('utf-8'), salt)
|
||||
return hashed.decode('utf-8')
|
||||
|
||||
def verify_password(password: str, hashed: str) -> bool:
|
||||
"""Verify a password against its hash.
|
||||
|
||||
Args:
|
||||
password: Plain text password to verify
|
||||
hashed: Previously hashed password
|
||||
|
||||
Returns:
|
||||
True if password matches hash
|
||||
"""
|
||||
return bcrypt.checkpw(password.encode('utf-8'), hashed.encode('utf-8'))
|
||||
''',
|
||||
|
||||
"auth/jwt_handler.py": '''"""JWT token generation and validation."""
|
||||
import jwt
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Dict, Optional
|
||||
|
||||
SECRET_KEY = "your-secret-key-here"
|
||||
|
||||
def create_token(user_id: int, expires_in: int = 3600) -> str:
|
||||
"""Generate a JWT access token for user authentication.
|
||||
|
||||
Args:
|
||||
user_id: User ID to encode in token
|
||||
expires_in: Token expiration in seconds (default 1 hour)
|
||||
|
||||
Returns:
|
||||
JWT token string
|
||||
"""
|
||||
payload = {
|
||||
'user_id': user_id,
|
||||
'exp': datetime.utcnow() + timedelta(seconds=expires_in),
|
||||
'iat': datetime.utcnow()
|
||||
}
|
||||
return jwt.encode(payload, SECRET_KEY, algorithm='HS256')
|
||||
|
||||
def decode_token(token: str) -> Optional[Dict]:
|
||||
"""Validate and decode JWT token to extract user information.
|
||||
|
||||
Args:
|
||||
token: JWT token string to decode
|
||||
|
||||
Returns:
|
||||
Decoded payload dict or None if invalid
|
||||
"""
|
||||
try:
|
||||
payload = jwt.decode(token, SECRET_KEY, algorithms=['HS256'])
|
||||
return payload
|
||||
except jwt.ExpiredSignatureError:
|
||||
return None
|
||||
except jwt.InvalidTokenError:
|
||||
return None
|
||||
''',
|
||||
|
||||
"api/user_endpoints.py": '''"""REST API endpoints for user management."""
|
||||
from flask import Flask, request, jsonify
|
||||
from typing import Dict
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
@app.route('/api/users', methods=['POST'])
|
||||
def create_user():
|
||||
"""Create a new user account with email and password.
|
||||
|
||||
Request JSON:
|
||||
email: User email address
|
||||
password: User password
|
||||
name: User full name
|
||||
|
||||
Returns:
|
||||
JSON with user_id and success status
|
||||
"""
|
||||
data = request.get_json()
|
||||
# Validate input
|
||||
if not data.get('email') or not data.get('password'):
|
||||
return jsonify({'error': 'Email and password required'}), 400
|
||||
|
||||
# Create user (simplified)
|
||||
user_id = 12345 # Would normally insert into database
|
||||
return jsonify({'user_id': user_id, 'success': True}), 201
|
||||
|
||||
@app.route('/api/users/<int:user_id>', methods=['GET'])
|
||||
def get_user(user_id: int):
|
||||
"""Retrieve user profile information by user ID.
|
||||
|
||||
Args:
|
||||
user_id: Unique user identifier
|
||||
|
||||
Returns:
|
||||
JSON with user profile data
|
||||
"""
|
||||
# Simplified user retrieval
|
||||
user = {
|
||||
'id': user_id,
|
||||
'email': 'user@example.com',
|
||||
'name': 'John Doe',
|
||||
'created_at': '2024-01-01'
|
||||
}
|
||||
return jsonify(user), 200
|
||||
''',
|
||||
|
||||
"utils/validation.py": '''"""Input validation and sanitization utilities."""
|
||||
import re
|
||||
from typing import Optional
|
||||
|
||||
def validate_email(email: str) -> bool:
|
||||
"""Check if email address format is valid using regex pattern.
|
||||
|
||||
Args:
|
||||
email: Email address string to validate
|
||||
|
||||
Returns:
|
||||
True if email format is valid
|
||||
"""
|
||||
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
|
||||
return bool(re.match(pattern, email))
|
||||
|
||||
def sanitize_input(text: str, max_length: int = 255) -> str:
|
||||
"""Clean user input by removing special characters and limiting length.
|
||||
|
||||
Args:
|
||||
text: Input text to sanitize
|
||||
max_length: Maximum allowed length
|
||||
|
||||
Returns:
|
||||
Sanitized text string
|
||||
"""
|
||||
# Remove special characters
|
||||
text = re.sub(r'[<>\"\'&]', '', text)
|
||||
# Trim whitespace
|
||||
text = text.strip()
|
||||
# Limit length
|
||||
return text[:max_length]
|
||||
|
||||
def validate_password_strength(password: str) -> tuple[bool, Optional[str]]:
|
||||
"""Validate password meets security requirements.
|
||||
|
||||
Requirements:
|
||||
- At least 8 characters
|
||||
- Contains uppercase and lowercase
|
||||
- Contains numbers
|
||||
- Contains special characters
|
||||
|
||||
Args:
|
||||
password: Password string to validate
|
||||
|
||||
Returns:
|
||||
Tuple of (is_valid, error_message)
|
||||
"""
|
||||
if len(password) < 8:
|
||||
return False, "Password must be at least 8 characters"
|
||||
if not re.search(r'[A-Z]', password):
|
||||
return False, "Password must contain uppercase letter"
|
||||
if not re.search(r'[a-z]', password):
|
||||
return False, "Password must contain lowercase letter"
|
||||
if not re.search(r'[0-9]', password):
|
||||
return False, "Password must contain number"
|
||||
if not re.search(r'[!@#$%^&*(),.?":{}|<>]', password):
|
||||
return False, "Password must contain special character"
|
||||
return True, None
|
||||
''',
|
||||
|
||||
"database/connection.py": '''"""Database connection pooling and management."""
|
||||
import psycopg2
|
||||
from psycopg2 import pool
|
||||
from typing import Optional
|
||||
from contextlib import contextmanager
|
||||
|
||||
class DatabasePool:
|
||||
"""PostgreSQL connection pool manager for handling multiple concurrent connections."""
|
||||
|
||||
def __init__(self, min_conn: int = 1, max_conn: int = 10):
|
||||
"""Initialize database connection pool.
|
||||
|
||||
Args:
|
||||
min_conn: Minimum number of connections to maintain
|
||||
max_conn: Maximum number of connections allowed
|
||||
"""
|
||||
self.pool = psycopg2.pool.SimpleConnectionPool(
|
||||
min_conn,
|
||||
max_conn,
|
||||
user='dbuser',
|
||||
password='dbpass',
|
||||
host='localhost',
|
||||
port='5432',
|
||||
database='myapp'
|
||||
)
|
||||
|
||||
@contextmanager
|
||||
def get_connection(self):
|
||||
"""Get a connection from pool as context manager.
|
||||
|
||||
Yields:
|
||||
Database connection object
|
||||
"""
|
||||
conn = self.pool.getconn()
|
||||
try:
|
||||
yield conn
|
||||
conn.commit()
|
||||
except Exception:
|
||||
conn.rollback()
|
||||
raise
|
||||
finally:
|
||||
self.pool.putconn(conn)
|
||||
|
||||
def close_all(self):
|
||||
"""Close all connections in pool."""
|
||||
self.pool.closeall()
|
||||
'''
|
||||
}
|
||||
|
||||
|
||||
# Natural language queries to test semantic understanding
|
||||
TEST_QUERIES = [
|
||||
{
|
||||
"query": "How do I securely hash passwords?",
|
||||
"expected_file": "auth/password_hasher.py",
|
||||
"description": "Should find password hashing implementation",
|
||||
},
|
||||
{
|
||||
"query": "Generate JWT token for user authentication",
|
||||
"expected_file": "auth/jwt_handler.py",
|
||||
"description": "Should find JWT token creation logic",
|
||||
},
|
||||
{
|
||||
"query": "Create new user account via REST API",
|
||||
"expected_file": "api/user_endpoints.py",
|
||||
"description": "Should find user registration endpoint",
|
||||
},
|
||||
{
|
||||
"query": "Validate email address format",
|
||||
"expected_file": "utils/validation.py",
|
||||
"description": "Should find email validation function",
|
||||
},
|
||||
{
|
||||
"query": "Connect to PostgreSQL database",
|
||||
"expected_file": "database/connection.py",
|
||||
"description": "Should find database connection management",
|
||||
},
|
||||
{
|
||||
"query": "Check password complexity requirements",
|
||||
"expected_file": "utils/validation.py",
|
||||
"description": "Should find password strength validation",
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.skipif(not SEMANTIC_AVAILABLE, reason="Semantic dependencies not available")
|
||||
class TestPureVectorSearch:
|
||||
"""Test pure vector search (code → fastembed → search)."""
|
||||
|
||||
@pytest.fixture
|
||||
def pure_vector_db(self):
|
||||
"""Create database with pure vector embeddings (no LLM)."""
|
||||
with tempfile.NamedTemporaryFile(suffix=".db", delete=False) as f:
|
||||
db_path = Path(f.name)
|
||||
|
||||
# Initialize database
|
||||
store = DirIndexStore(db_path)
|
||||
store.initialize()
|
||||
|
||||
# Add test files
|
||||
with store._get_connection() as conn:
|
||||
for path, content in TEST_CODE_SAMPLES.items():
|
||||
name = path.split('/')[-1]
|
||||
conn.execute(
|
||||
"""INSERT INTO files (name, full_path, content, language, mtime)
|
||||
VALUES (?, ?, ?, ?, ?)""",
|
||||
(name, path, content, "python", 0.0)
|
||||
)
|
||||
conn.commit()
|
||||
|
||||
# Generate embeddings using pure vector approach (raw code)
|
||||
embedder = Embedder(profile="code")
|
||||
vector_store = VectorStore(db_path)
|
||||
chunker = Chunker(config=ChunkConfig(max_chunk_size=2000))
|
||||
|
||||
with sqlite3.connect(db_path) as conn:
|
||||
conn.row_factory = sqlite3.Row
|
||||
rows = conn.execute("SELECT full_path, content FROM files").fetchall()
|
||||
|
||||
for row in rows:
|
||||
# Pure vector: directly chunk and embed raw code
|
||||
chunks = chunker.chunk_sliding_window(
|
||||
row["content"],
|
||||
file_path=row["full_path"],
|
||||
language="python"
|
||||
)
|
||||
for chunk in chunks:
|
||||
chunk.embedding = embedder.embed_single(chunk.content)
|
||||
chunk.metadata["strategy"] = "pure_vector"
|
||||
if chunks:
|
||||
vector_store.add_chunks(chunks, row["full_path"])
|
||||
|
||||
yield db_path
|
||||
store.close()
|
||||
if db_path.exists():
|
||||
db_path.unlink()
|
||||
|
||||
def test_pure_vector_queries(self, pure_vector_db):
|
||||
"""Test natural language queries with pure vector search."""
|
||||
engine = HybridSearchEngine()
|
||||
results = {}
|
||||
|
||||
for test_case in TEST_QUERIES:
|
||||
query = test_case["query"]
|
||||
expected_file = test_case["expected_file"]
|
||||
|
||||
search_results = engine.search(
|
||||
pure_vector_db,
|
||||
query,
|
||||
limit=5,
|
||||
enable_vector=True,
|
||||
pure_vector=True,
|
||||
)
|
||||
|
||||
# Check if expected file is in top 3 results
|
||||
top_files = [r.path for r in search_results[:3]]
|
||||
found = expected_file in top_files
|
||||
rank = top_files.index(expected_file) + 1 if found else None
|
||||
|
||||
results[query] = {
|
||||
"found": found,
|
||||
"rank": rank,
|
||||
"top_result": search_results[0].path if search_results else None,
|
||||
"top_score": search_results[0].score if search_results else 0.0,
|
||||
}
|
||||
|
||||
return results
|
||||
|
||||
|
||||
@pytest.mark.skipif(not SEMANTIC_AVAILABLE, reason="Semantic dependencies not available")
|
||||
class TestLLMEnhancedSearch:
|
||||
"""Test LLM-enhanced vector search (code → LLM → fastembed → search)."""
|
||||
|
||||
@pytest.fixture
|
||||
def llm_enhanced_db(self):
|
||||
"""Create database with LLM-enhanced embeddings."""
|
||||
# Skip if CCW not available
|
||||
llm_config = LLMConfig(enabled=True, tool="gemini")
|
||||
enhancer = LLMEnhancer(llm_config)
|
||||
if not enhancer.check_available():
|
||||
pytest.skip("CCW CLI not available for LLM enhancement")
|
||||
|
||||
with tempfile.NamedTemporaryFile(suffix=".db", delete=False) as f:
|
||||
db_path = Path(f.name)
|
||||
|
||||
# Initialize database
|
||||
store = DirIndexStore(db_path)
|
||||
store.initialize()
|
||||
|
||||
# Add test files
|
||||
with store._get_connection() as conn:
|
||||
for path, content in TEST_CODE_SAMPLES.items():
|
||||
name = path.split('/')[-1]
|
||||
conn.execute(
|
||||
"""INSERT INTO files (name, full_path, content, language, mtime)
|
||||
VALUES (?, ?, ?, ?, ?)""",
|
||||
(name, path, content, "python", 0.0)
|
||||
)
|
||||
conn.commit()
|
||||
|
||||
# Generate embeddings using LLM-enhanced approach
|
||||
embedder = Embedder(profile="code")
|
||||
vector_store = VectorStore(db_path)
|
||||
|
||||
# Create enhanced indexer
|
||||
indexer = EnhancedSemanticIndexer(enhancer, embedder, vector_store)
|
||||
|
||||
# Prepare file data
|
||||
file_data_list = [
|
||||
FileData(path=path, content=content, language="python")
|
||||
for path, content in TEST_CODE_SAMPLES.items()
|
||||
]
|
||||
|
||||
# Index with LLM enhancement
|
||||
indexed = indexer.index_files(file_data_list)
|
||||
print(f"\nLLM-enhanced indexing: {indexed}/{len(file_data_list)} files")
|
||||
|
||||
yield db_path
|
||||
store.close()
|
||||
if db_path.exists():
|
||||
db_path.unlink()
|
||||
|
||||
def test_llm_enhanced_queries(self, llm_enhanced_db):
|
||||
"""Test natural language queries with LLM-enhanced search."""
|
||||
engine = HybridSearchEngine()
|
||||
results = {}
|
||||
|
||||
for test_case in TEST_QUERIES:
|
||||
query = test_case["query"]
|
||||
expected_file = test_case["expected_file"]
|
||||
|
||||
search_results = engine.search(
|
||||
llm_enhanced_db,
|
||||
query,
|
||||
limit=5,
|
||||
enable_vector=True,
|
||||
pure_vector=True,
|
||||
)
|
||||
|
||||
# Check if expected file is in top 3 results
|
||||
top_files = [r.path for r in search_results[:3]]
|
||||
found = expected_file in top_files
|
||||
rank = top_files.index(expected_file) + 1 if found else None
|
||||
|
||||
results[query] = {
|
||||
"found": found,
|
||||
"rank": rank,
|
||||
"top_result": search_results[0].path if search_results else None,
|
||||
"top_score": search_results[0].score if search_results else 0.0,
|
||||
}
|
||||
|
||||
return results
|
||||
|
||||
|
||||
@pytest.mark.skipif(not SEMANTIC_AVAILABLE, reason="Semantic dependencies not available")
|
||||
class TestSearchComparison:
|
||||
"""Compare pure vector vs LLM-enhanced search side-by-side."""
|
||||
|
||||
def test_comparison(self):
|
||||
"""Run comprehensive comparison of both approaches."""
|
||||
# This test runs both approaches and compares results
|
||||
print("\n" + "="*70)
|
||||
print("SEMANTIC SEARCH COMPARISON TEST")
|
||||
print("="*70)
|
||||
|
||||
try:
|
||||
# Test pure vector search
|
||||
print("\n1. Testing Pure Vector Search (Code → fastembed)")
|
||||
print("-" * 70)
|
||||
pure_test = TestPureVectorSearch()
|
||||
pure_db = next(pure_test.pure_vector_db())
|
||||
pure_results = pure_test.test_pure_vector_queries(pure_db)
|
||||
|
||||
# Test LLM-enhanced search
|
||||
print("\n2. Testing LLM-Enhanced Search (Code → LLM → fastembed)")
|
||||
print("-" * 70)
|
||||
llm_test = TestLLMEnhancedSearch()
|
||||
llm_db = next(llm_test.llm_enhanced_db())
|
||||
llm_results = llm_test.test_llm_enhanced_queries(llm_db)
|
||||
|
||||
# Compare results
|
||||
print("\n3. COMPARISON RESULTS")
|
||||
print("="*70)
|
||||
print(f"{'Query':<50} {'Pure Vec':<12} {'LLM Enhanced':<12}")
|
||||
print("-" * 70)
|
||||
|
||||
pure_score = 0
|
||||
llm_score = 0
|
||||
|
||||
for test_case in TEST_QUERIES:
|
||||
query = test_case["query"][:47] + "..." if len(test_case["query"]) > 50 else test_case["query"]
|
||||
|
||||
pure_res = pure_results.get(test_case["query"], {})
|
||||
llm_res = llm_results.get(test_case["query"], {})
|
||||
|
||||
pure_status = f"[OK] Rank {pure_res.get('rank', '?')}" if pure_res.get('found') else "[X] Not found"
|
||||
llm_status = f"[OK] Rank {llm_res.get('rank', '?')}" if llm_res.get('found') else "[X] Not found"
|
||||
|
||||
print(f"{query:<50} {pure_status:<12} {llm_status:<12}")
|
||||
|
||||
if pure_res.get('found'):
|
||||
pure_score += (4 - pure_res['rank']) # 3 points for rank 1, 2 for rank 2, etc
|
||||
if llm_res.get('found'):
|
||||
llm_score += (4 - llm_res['rank'])
|
||||
|
||||
print("-" * 70)
|
||||
print(f"{'TOTAL SCORE':<50} {pure_score:<12} {llm_score:<12}")
|
||||
print("="*70)
|
||||
|
||||
# Interpretation
|
||||
print("\nINTERPRETATION:")
|
||||
if llm_score > pure_score:
|
||||
improvement = ((llm_score - pure_score) / max(pure_score, 1)) * 100
|
||||
print(f"[OK] LLM enhancement improves results by {improvement:.1f}%")
|
||||
print(" LLM summaries match natural language queries better than raw code")
|
||||
elif pure_score > llm_score:
|
||||
print("[X] Pure vector search performed better (unexpected)")
|
||||
print(" This may indicate LLM summaries are too generic")
|
||||
else:
|
||||
print("= Both approaches performed equally")
|
||||
|
||||
except Exception as e:
|
||||
pytest.fail(f"Comparison test failed: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main([__file__, "-v", "-s"])
|
||||
Reference in New Issue
Block a user