Add comprehensive brainstorming commands for synthesis, system architecture, UI design, and user research perspectives

- Implemented the `brainstorm:synthesis` command to integrate insights from various roles into a cohesive analysis and recommendations report.
- Created `brainstorm:system-architect` command for technical architecture and scalability analysis, including detailed execution protocols and output structures.
- Developed `brainstorm:ui-designer` command focusing on user experience and interface design, with a structured approach to analysis and documentation.
- Introduced `brainstorm:user-researcher` command for user behavior analysis and research insights, emphasizing user needs and usability assessments.
This commit is contained in:
catlog22
2025-09-08 23:35:23 +08:00
parent 1454c49ab0
commit d643a59307
11 changed files with 2568 additions and 506 deletions

View File

@@ -0,0 +1,253 @@
---
name: brainstorm:data-architect
description: Data architect perspective brainstorming for data modeling, flow, and analytics analysis
usage: /brainstorm:data-architect <topic>
argument-hint: "topic or challenge to analyze from data architecture perspective"
examples:
- /brainstorm:data-architect "user analytics data pipeline"
- /brainstorm:data-architect "real-time data processing system"
- /brainstorm:data-architect "data warehouse modernization"
allowed-tools: Task(conceptual-planning-agent), TodoWrite(*)
---
## 📊 **角色定义: Data Architect**
### 核心职责
- **数据模型设计**: 设计高效、可扩展的数据模型
- **数据流程设计**: 规划数据采集、处理、存储流程
- **数据质量管理**: 确保数据准确性、完整性、一致性
- **分析和洞察**: 设计数据分析和商业智能解决方案
### 关注领域
- **数据建模**: 关系模型、NoSQL、数据仓库、湖仓一体
- **数据管道**: ETL/ELT流程、实时处理、批处理
- **数据治理**: 数据质量、安全、隐私、合规
- **分析平台**: BI工具、机器学习、报表系统
## 🧠 **分析框架**
@~/.claude/workflows/brainstorming-principles.md
@~/.claude/workflows/conceptual-planning-agent.md
### 核心分析问题
1. **数据需求和来源**:
- 需要哪些数据来支持业务决策?
- 数据来源的可靠性和质量如何?
- 实时数据vs历史数据的需求平衡
2. **数据架构和存储**:
- 最适合的数据存储方案是什么?
- 如何设计可扩展的数据模型?
- 数据分区和索引策略?
3. **数据处理和流程**:
- 数据处理的性能要求?
- 如何设计容错的数据管道?
- 数据变更和版本控制策略?
4. **分析和报告**:
- 如何支持不同的分析需求?
- 实时仪表板vs定期报告
- 数据可视化和自助分析能力?
## ⚙️ **执行协议**
### Phase 1: 会话检测与初始化
```bash
# 自动检测活动会话
CHECK: .workflow/.active-* marker files
IF active_session EXISTS:
session_id = get_active_session()
load_context_from(session_id)
ELSE:
request_user_for_session_creation()
```
### Phase 2: 目录结构创建
```bash
# 创建数据架构师分析目录
mkdir -p .workflow/WFS-{topic-slug}/.brainstorming/data-architect/
```
### Phase 3: TodoWrite 初始化
设置数据架构师视角分析的任务跟踪:
```json
[
{"content": "Initialize data architect brainstorming session", "status": "completed", "activeForm": "Initializing session"},
{"content": "Analyze data requirements and sources", "status": "in_progress", "activeForm": "Analyzing data requirements"},
{"content": "Design optimal data model and schema", "status": "pending", "activeForm": "Designing data model"},
{"content": "Plan data pipeline and processing workflows", "status": "pending", "activeForm": "Planning data pipelines"},
{"content": "Evaluate data quality and governance", "status": "pending", "activeForm": "Evaluating data governance"},
{"content": "Design analytics and reporting solutions", "status": "pending", "activeForm": "Designing analytics"},
{"content": "Generate comprehensive data architecture documentation", "status": "pending", "activeForm": "Generating documentation"}
]
```
### Phase 4: 概念规划代理协调
```bash
Task(conceptual-planning-agent): "
Conduct data architect perspective brainstorming for: {topic}
ROLE CONTEXT: Data Architect
- Focus Areas: Data modeling, data flow, storage optimization, analytics infrastructure
- Analysis Framework: Data-driven approach with emphasis on scalability, quality, and insights
- Success Metrics: Data quality, processing efficiency, analytics accuracy, scalability
USER CONTEXT: {captured_user_requirements_from_session}
ANALYSIS REQUIREMENTS:
1. Data Requirements Analysis
- Identify all data sources (internal, external, third-party)
- Analyze data types, volumes, and velocity requirements
- Define data freshness and latency requirements
- Assess data quality and completeness standards
2. Data Architecture Design
- Design logical and physical data models
- Plan data storage strategy (relational, NoSQL, data lake, warehouse)
- Design data partitioning and sharding strategies
- Plan for data archival and retention policies
3. Data Pipeline and Processing
- Design ETL/ELT processes and data transformation workflows
- Plan real-time vs batch processing requirements
- Design error handling and data recovery mechanisms
- Plan for data lineage and audit trails
4. Data Quality and Governance
- Design data validation and quality monitoring
- Plan data governance framework and policies
- Assess privacy and compliance requirements (GDPR, CCPA, etc.)
- Design data access controls and security measures
5. Analytics and Reporting Infrastructure
- Design data warehouse/data mart architecture
- Plan business intelligence and reporting solutions
- Design self-service analytics capabilities
- Plan for machine learning and advanced analytics integration
6. Performance and Scalability
- Analyze current and projected data volumes
- Design indexing and query optimization strategies
- Plan horizontal and vertical scaling approaches
- Design monitoring and alerting for data systems
OUTPUT REQUIREMENTS: Save comprehensive analysis to:
.workflow/WFS-{topic-slug}/.brainstorming/data-architect/
- analysis.md (main data architecture analysis)
- data-model.md (detailed data models and schemas)
- pipeline-design.md (data processing workflows and ETL design)
- governance-plan.md (data quality, security, and compliance framework)
Apply data architecture expertise to create scalable, reliable, and insightful data solutions."
```
## 📊 **输出结构**
### 保存位置
```
.workflow/WFS-{topic-slug}/.brainstorming/data-architect/
├── analysis.md # 主要数据架构分析
├── data-model.md # 详细数据模型和架构
├── pipeline-design.md # 数据处理工作流和ETL设计
└── governance-plan.md # 数据质量、安全和合规框架
```
### 文档模板
#### analysis.md 结构
```markdown
# Data Architect Analysis: {Topic}
*Generated: {timestamp}*
## Executive Summary
[核心数据架构发现和建议概述]
## Current Data Landscape Assessment
### Existing Data Sources
### Data Quality Issues
### Performance Bottlenecks
### Integration Challenges
## Data Requirements Analysis
### Business Data Requirements
### Technical Data Requirements
- Volume: [预期数据量和增长]
- Velocity: [数据更新频率]
- Variety: [数据类型和格式]
- Veracity: [数据质量要求]
## Proposed Data Architecture
### Data Storage Strategy
### Data Model Design
### Integration Architecture
### Analytics Infrastructure
## Data Pipeline Design
### Data Ingestion Strategy
### Processing Workflows
### Transformation Rules
### Quality Assurance
## Governance and Compliance
### Data Quality Framework
### Security and Privacy
### Audit and Lineage
### Compliance Requirements
## Performance and Scalability
### Optimization Strategies
### Scaling Plans
### Monitoring and Alerting
### Disaster Recovery
```
## 🔄 **会话集成**
### 状态同步
分析完成后,更新 `workflow-session.json`:
```json
{
"phases": {
"BRAINSTORM": {
"data_architect": {
"status": "completed",
"completed_at": "timestamp",
"output_directory": ".workflow/WFS-{topic}/.brainstorming/data-architect/",
"key_insights": ["data_model_optimization", "pipeline_efficiency", "governance_requirement"]
}
}
}
}
```
### 与其他角色的协作
数据架构师视角为其他角色提供:
- **数据能力和限制** → Product Manager
- **数据存储要求** → System Architect
- **数据展示能力** → UI Designer
- **数据安全要求** → Security Expert
- **功能数据支持** → Feature Planner
## ✅ **质量标准**
### 必须包含的架构元素
- [ ] 完整的数据模型设计
- [ ] 详细的数据流程图
- [ ] 数据质量保证方案
- [ ] 可扩展性和性能优化
- [ ] 合规和安全控制
### 数据架构原则检查
- [ ] 可扩展性:支持数据量和用户增长
- [ ] 可靠性:具有容错和恢复机制
- [ ] 可维护性:清晰的数据模型和流程
- [ ] 安全性:数据保护和访问控制
- [ ] 高效性:优化的查询和处理性能
### 数据质量指标
- [ ] 数据准确性和完整性标准
- [ ] 数据一致性检查机制
- [ ] 数据时效性和新鲜度要求
- [ ] 数据可追溯性和审计能力
- [ ] 合规性检查和报告机制