mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-11 02:33:51 +08:00
feat: Add multi-type embedding backends for cascade retrieval
- Implemented BinaryEmbeddingBackend for fast coarse filtering using 256-dimensional binary vectors. - Developed DenseEmbeddingBackend for high-precision dense vectors (2048 dimensions) for reranking. - Created CascadeEmbeddingBackend to combine binary and dense embeddings for two-stage retrieval. - Introduced utility functions for embedding conversion and distance computation. chore: Migration 010 - Add multi-vector storage support - Added 'chunks' table to support multi-vector embeddings for cascade retrieval. - Included new columns: embedding_binary (256-dim) and embedding_dense (2048-dim) for efficient storage. - Implemented upgrade and downgrade functions to manage schema changes and data migration.
This commit is contained in:
@@ -201,3 +201,244 @@ def test_add_files_rollback_failure_is_chained(
|
||||
assert "boom" in caplog.text
|
||||
finally:
|
||||
store.close()
|
||||
|
||||
|
||||
class TestMultiVectorChunks:
|
||||
"""Tests for multi-vector chunk storage operations."""
|
||||
|
||||
def test_add_chunks_basic(self, tmp_path: Path) -> None:
|
||||
"""Basic chunk insertion without embeddings."""
|
||||
store = SQLiteStore(tmp_path / "chunks_basic.db")
|
||||
store.initialize()
|
||||
|
||||
try:
|
||||
chunks_data = [
|
||||
{"content": "def hello(): pass", "metadata": {"type": "function"}},
|
||||
{"content": "class World: pass", "metadata": {"type": "class"}},
|
||||
]
|
||||
|
||||
ids = store.add_chunks("test.py", chunks_data)
|
||||
|
||||
assert len(ids) == 2
|
||||
assert ids == [1, 2]
|
||||
assert store.count_chunks() == 2
|
||||
finally:
|
||||
store.close()
|
||||
|
||||
def test_add_chunks_with_binary_embeddings(self, tmp_path: Path) -> None:
|
||||
"""Chunk insertion with binary embeddings for coarse ranking."""
|
||||
store = SQLiteStore(tmp_path / "chunks_binary.db")
|
||||
store.initialize()
|
||||
|
||||
try:
|
||||
chunks_data = [
|
||||
{"content": "content1"},
|
||||
{"content": "content2"},
|
||||
]
|
||||
# 256-bit binary = 32 bytes
|
||||
binary_embs = [b"\x00" * 32, b"\xff" * 32]
|
||||
|
||||
ids = store.add_chunks(
|
||||
"test.py", chunks_data, embedding_binary=binary_embs
|
||||
)
|
||||
|
||||
assert len(ids) == 2
|
||||
|
||||
retrieved = store.get_binary_embeddings(ids)
|
||||
assert len(retrieved) == 2
|
||||
assert retrieved[ids[0]] == b"\x00" * 32
|
||||
assert retrieved[ids[1]] == b"\xff" * 32
|
||||
finally:
|
||||
store.close()
|
||||
|
||||
def test_add_chunks_with_dense_embeddings(self, tmp_path: Path) -> None:
|
||||
"""Chunk insertion with dense embeddings for fine ranking."""
|
||||
store = SQLiteStore(tmp_path / "chunks_dense.db")
|
||||
store.initialize()
|
||||
|
||||
try:
|
||||
chunks_data = [{"content": "content1"}, {"content": "content2"}]
|
||||
# 2048 floats = 8192 bytes
|
||||
dense_embs = [b"\x00" * 8192, b"\xff" * 8192]
|
||||
|
||||
ids = store.add_chunks(
|
||||
"test.py", chunks_data, embedding_dense=dense_embs
|
||||
)
|
||||
|
||||
assert len(ids) == 2
|
||||
|
||||
retrieved = store.get_dense_embeddings(ids)
|
||||
assert len(retrieved) == 2
|
||||
assert retrieved[ids[0]] == b"\x00" * 8192
|
||||
assert retrieved[ids[1]] == b"\xff" * 8192
|
||||
finally:
|
||||
store.close()
|
||||
|
||||
def test_add_chunks_with_all_embeddings(self, tmp_path: Path) -> None:
|
||||
"""Chunk insertion with all embedding types."""
|
||||
store = SQLiteStore(tmp_path / "chunks_all.db")
|
||||
store.initialize()
|
||||
|
||||
try:
|
||||
chunks_data = [{"content": "full test"}]
|
||||
embedding = [[0.1, 0.2, 0.3]]
|
||||
binary_embs = [b"\xab" * 32]
|
||||
dense_embs = [b"\xcd" * 8192]
|
||||
|
||||
ids = store.add_chunks(
|
||||
"test.py",
|
||||
chunks_data,
|
||||
embedding=embedding,
|
||||
embedding_binary=binary_embs,
|
||||
embedding_dense=dense_embs,
|
||||
)
|
||||
|
||||
assert len(ids) == 1
|
||||
|
||||
binary = store.get_binary_embeddings(ids)
|
||||
dense = store.get_dense_embeddings(ids)
|
||||
|
||||
assert binary[ids[0]] == b"\xab" * 32
|
||||
assert dense[ids[0]] == b"\xcd" * 8192
|
||||
finally:
|
||||
store.close()
|
||||
|
||||
def test_add_chunks_length_mismatch_raises(self, tmp_path: Path) -> None:
|
||||
"""Mismatched embedding length should raise ValueError."""
|
||||
store = SQLiteStore(tmp_path / "chunks_mismatch.db")
|
||||
store.initialize()
|
||||
|
||||
try:
|
||||
chunks_data = [{"content": "a"}, {"content": "b"}]
|
||||
|
||||
with pytest.raises(ValueError, match="embedding_binary length"):
|
||||
store.add_chunks(
|
||||
"test.py", chunks_data, embedding_binary=[b"\x00" * 32]
|
||||
)
|
||||
|
||||
with pytest.raises(ValueError, match="embedding_dense length"):
|
||||
store.add_chunks(
|
||||
"test.py", chunks_data, embedding_dense=[b"\x00" * 8192]
|
||||
)
|
||||
|
||||
with pytest.raises(ValueError, match="embedding length"):
|
||||
store.add_chunks(
|
||||
"test.py", chunks_data, embedding=[[0.1]]
|
||||
)
|
||||
finally:
|
||||
store.close()
|
||||
|
||||
def test_get_chunks_by_ids(self, tmp_path: Path) -> None:
|
||||
"""Retrieve chunk data by IDs."""
|
||||
store = SQLiteStore(tmp_path / "chunks_get.db")
|
||||
store.initialize()
|
||||
|
||||
try:
|
||||
chunks_data = [
|
||||
{"content": "def foo(): pass", "metadata": {"line": 1}},
|
||||
{"content": "def bar(): pass", "metadata": {"line": 5}},
|
||||
]
|
||||
|
||||
ids = store.add_chunks("test.py", chunks_data)
|
||||
retrieved = store.get_chunks_by_ids(ids)
|
||||
|
||||
assert len(retrieved) == 2
|
||||
assert retrieved[0]["content"] == "def foo(): pass"
|
||||
assert retrieved[0]["metadata"]["line"] == 1
|
||||
assert retrieved[1]["content"] == "def bar(): pass"
|
||||
assert retrieved[1]["file_path"] == "test.py"
|
||||
finally:
|
||||
store.close()
|
||||
|
||||
def test_delete_chunks_by_file(self, tmp_path: Path) -> None:
|
||||
"""Delete all chunks for a file."""
|
||||
store = SQLiteStore(tmp_path / "chunks_delete.db")
|
||||
store.initialize()
|
||||
|
||||
try:
|
||||
store.add_chunks("a.py", [{"content": "a1"}, {"content": "a2"}])
|
||||
store.add_chunks("b.py", [{"content": "b1"}])
|
||||
|
||||
assert store.count_chunks() == 3
|
||||
|
||||
deleted = store.delete_chunks_by_file("a.py")
|
||||
assert deleted == 2
|
||||
assert store.count_chunks() == 1
|
||||
|
||||
deleted = store.delete_chunks_by_file("nonexistent.py")
|
||||
assert deleted == 0
|
||||
finally:
|
||||
store.close()
|
||||
|
||||
def test_get_embeddings_empty_list(self, tmp_path: Path) -> None:
|
||||
"""Empty chunk ID list returns empty dict."""
|
||||
store = SQLiteStore(tmp_path / "chunks_empty.db")
|
||||
store.initialize()
|
||||
|
||||
try:
|
||||
assert store.get_binary_embeddings([]) == {}
|
||||
assert store.get_dense_embeddings([]) == {}
|
||||
assert store.get_chunks_by_ids([]) == []
|
||||
finally:
|
||||
store.close()
|
||||
|
||||
def test_add_chunks_empty_list(self, tmp_path: Path) -> None:
|
||||
"""Empty chunks list returns empty IDs."""
|
||||
store = SQLiteStore(tmp_path / "chunks_empty_add.db")
|
||||
store.initialize()
|
||||
|
||||
try:
|
||||
ids = store.add_chunks("test.py", [])
|
||||
assert ids == []
|
||||
assert store.count_chunks() == 0
|
||||
finally:
|
||||
store.close()
|
||||
|
||||
def test_chunks_table_migration(self, tmp_path: Path) -> None:
|
||||
"""Existing chunks table gets new columns via migration."""
|
||||
db_path = tmp_path / "chunks_migration.db"
|
||||
|
||||
# Create old schema without multi-vector columns
|
||||
conn = sqlite3.connect(db_path)
|
||||
conn.execute(
|
||||
"""
|
||||
CREATE TABLE chunks (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
file_path TEXT NOT NULL,
|
||||
content TEXT NOT NULL,
|
||||
embedding BLOB,
|
||||
metadata TEXT,
|
||||
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
||||
)
|
||||
"""
|
||||
)
|
||||
conn.execute("CREATE INDEX idx_chunks_file_path ON chunks(file_path)")
|
||||
conn.execute(
|
||||
"INSERT INTO chunks (file_path, content) VALUES ('old.py', 'old content')"
|
||||
)
|
||||
conn.commit()
|
||||
conn.close()
|
||||
|
||||
# Open with SQLiteStore - should migrate
|
||||
store = SQLiteStore(db_path)
|
||||
store.initialize()
|
||||
|
||||
try:
|
||||
# Verify new columns exist by using them
|
||||
ids = store.add_chunks(
|
||||
"new.py",
|
||||
[{"content": "new content"}],
|
||||
embedding_binary=[b"\x00" * 32],
|
||||
embedding_dense=[b"\x00" * 8192],
|
||||
)
|
||||
|
||||
assert len(ids) == 1
|
||||
|
||||
# Old data should still be accessible
|
||||
assert store.count_chunks() == 2
|
||||
|
||||
# New embeddings should work
|
||||
binary = store.get_binary_embeddings(ids)
|
||||
assert binary[ids[0]] == b"\x00" * 32
|
||||
finally:
|
||||
store.close()
|
||||
|
||||
Reference in New Issue
Block a user