feat: Enhance LiteLLM integration and CLI management

- Added token estimation and batching functionality in LiteLLMEmbedder to handle large text inputs efficiently.
- Updated embed method to support max_tokens_per_batch parameter for better API call management.
- Introduced new API routes for managing custom CLI endpoints, including GET, POST, PUT, and DELETE methods.
- Enhanced CLI history component to support source directory context for native session content.
- Improved error handling and logging in various components for better debugging and user feedback.
- Added internationalization support for new API endpoint features in the i18n module.
- Updated CodexLens CLI commands to allow for concurrent API calls with a max_workers option.
- Enhanced embedding manager to track model information and handle embeddings generation more robustly.
- Added entry points for CLI commands in the package configuration.
This commit is contained in:
catlog22
2025-12-24 18:01:26 +08:00
parent dfca4d60ee
commit e3e61bcae9
13 changed files with 575 additions and 107 deletions

View File

@@ -1,8 +1,11 @@
README.md
pyproject.toml
src/ccw_litellm/__init__.py
src/ccw_litellm/cli.py
src/ccw_litellm.egg-info/PKG-INFO
src/ccw_litellm.egg-info/SOURCES.txt
src/ccw_litellm.egg-info/dependency_links.txt
src/ccw_litellm.egg-info/entry_points.txt
src/ccw_litellm.egg-info/requires.txt
src/ccw_litellm.egg-info/top_level.txt
src/ccw_litellm/clients/__init__.py

View File

@@ -0,0 +1,2 @@
[console_scripts]
ccw-litellm = ccw_litellm.cli:main

View File

@@ -102,18 +102,75 @@ class LiteLLMEmbedder(AbstractEmbedder):
"""Embedding vector size."""
return self._model_config.dimensions
def _estimate_tokens(self, text: str) -> int:
"""Estimate token count for a text using fast heuristic.
Args:
text: Text to estimate tokens for
Returns:
Estimated token count (len/4 is a reasonable approximation)
"""
return len(text) // 4
def _create_batches(
self,
texts: list[str],
max_tokens: int = 30000
) -> list[list[str]]:
"""Split texts into batches that fit within token limits.
Args:
texts: List of texts to batch
max_tokens: Maximum tokens per batch (default: 30000, safe margin for 40960 limit)
Returns:
List of text batches
"""
batches = []
current_batch = []
current_tokens = 0
for text in texts:
text_tokens = self._estimate_tokens(text)
# If single text exceeds limit, truncate it
if text_tokens > max_tokens:
logger.warning(f"Text with {text_tokens} estimated tokens exceeds limit, truncating")
# Truncate to fit (rough estimate: 4 chars per token)
max_chars = max_tokens * 4
text = text[:max_chars]
text_tokens = self._estimate_tokens(text)
# Start new batch if current would exceed limit
if current_tokens + text_tokens > max_tokens and current_batch:
batches.append(current_batch)
current_batch = []
current_tokens = 0
current_batch.append(text)
current_tokens += text_tokens
# Add final batch
if current_batch:
batches.append(current_batch)
return batches
def embed(
self,
texts: str | Sequence[str],
*,
batch_size: int | None = None,
max_tokens_per_batch: int = 30000,
**kwargs: Any,
) -> NDArray[np.floating]:
"""Embed one or more texts.
Args:
texts: Single text or sequence of texts
batch_size: Batch size for processing (currently unused, LiteLLM handles batching)
batch_size: Batch size for processing (deprecated, use max_tokens_per_batch)
max_tokens_per_batch: Maximum estimated tokens per API call (default: 30000)
**kwargs: Additional arguments for litellm.embedding()
Returns:
@@ -125,10 +182,8 @@ class LiteLLMEmbedder(AbstractEmbedder):
# Normalize input to list
if isinstance(texts, str):
text_list = [texts]
single_input = True
else:
text_list = list(texts)
single_input = False
if not text_list:
# Return empty array with correct shape
@@ -137,36 +192,53 @@ class LiteLLMEmbedder(AbstractEmbedder):
# Merge kwargs
embedding_kwargs = {**self._litellm_kwargs, **kwargs}
try:
# For OpenAI-compatible endpoints, ensure encoding_format is set
if self._provider_config.api_base and "encoding_format" not in embedding_kwargs:
embedding_kwargs["encoding_format"] = "float"
# For OpenAI-compatible endpoints, ensure encoding_format is set
if self._provider_config.api_base and "encoding_format" not in embedding_kwargs:
embedding_kwargs["encoding_format"] = "float"
# Call LiteLLM embedding
response = litellm.embedding(
model=self._format_model_name(),
input=text_list,
**embedding_kwargs,
)
# Split into token-aware batches
batches = self._create_batches(text_list, max_tokens_per_batch)
# Extract embeddings
embeddings = [item["embedding"] for item in response.data]
if len(batches) > 1:
logger.info(f"Split {len(text_list)} texts into {len(batches)} batches for embedding")
# Convert to numpy array
result = np.array(embeddings, dtype=np.float32)
all_embeddings = []
# Validate dimensions
if result.shape[1] != self.dimensions:
logger.warning(
f"Expected {self.dimensions} dimensions, got {result.shape[1]}. "
f"Configuration may be incorrect."
for batch_idx, batch in enumerate(batches):
try:
# Build call kwargs with explicit api_base
call_kwargs = {**embedding_kwargs}
if self._provider_config.api_base:
call_kwargs["api_base"] = self._provider_config.api_base
if self._provider_config.api_key:
call_kwargs["api_key"] = self._provider_config.api_key
# Call LiteLLM embedding for this batch
response = litellm.embedding(
model=self._format_model_name(),
input=batch,
**call_kwargs,
)
return result
# Extract embeddings
batch_embeddings = [item["embedding"] for item in response.data]
all_embeddings.extend(batch_embeddings)
except Exception as e:
logger.error(f"LiteLLM embedding failed: {e}")
raise
except Exception as e:
logger.error(f"LiteLLM embedding failed for batch {batch_idx + 1}/{len(batches)}: {e}")
raise
# Convert to numpy array
result = np.array(all_embeddings, dtype=np.float32)
# Validate dimensions
if result.shape[1] != self.dimensions:
logger.warning(
f"Expected {self.dimensions} dimensions, got {result.shape[1]}. "
f"Configuration may be incorrect."
)
return result
@property
def model_name(self) -> str: