Refactor code structure and remove redundant changes

This commit is contained in:
catlog22
2026-01-24 14:47:47 +08:00
parent cf5fecd66d
commit f2b0a5bbc9
113 changed files with 43217 additions and 235 deletions

View File

@@ -0,0 +1,821 @@
"""Code chunking strategies for semantic search.
This module provides various chunking strategies for breaking down source code
into semantic chunks suitable for embedding and search.
Lightweight Mode:
The ChunkConfig supports a `skip_token_count` option for performance optimization.
When enabled, token counting uses a fast character-based estimation (char/4)
instead of expensive tiktoken encoding.
Use cases for lightweight mode:
- Large-scale indexing where speed is critical
- Scenarios where approximate token counts are acceptable
- Memory-constrained environments
- Initial prototyping and development
Example:
# Default mode (accurate tiktoken encoding)
config = ChunkConfig()
chunker = Chunker(config)
# Lightweight mode (fast char/4 estimation)
config = ChunkConfig(skip_token_count=True)
chunker = Chunker(config)
chunks = chunker.chunk_file(content, symbols, path, language)
"""
from __future__ import annotations
from dataclasses import dataclass
from pathlib import Path
from typing import List, Optional, Tuple
from codexlens.entities import SemanticChunk, Symbol
from codexlens.parsers.tokenizer import get_default_tokenizer
@dataclass
class ChunkConfig:
"""Configuration for chunking strategies."""
max_chunk_size: int = 1000 # Max characters per chunk
overlap: int = 200 # Overlap for sliding window (increased from 100 for better context)
strategy: str = "auto" # Chunking strategy: auto, symbol, sliding_window, hybrid
min_chunk_size: int = 50 # Minimum chunk size
skip_token_count: bool = False # Skip expensive token counting (use char/4 estimate)
strip_comments: bool = True # Remove comments from chunk content for embedding
strip_docstrings: bool = True # Remove docstrings from chunk content for embedding
preserve_original: bool = True # Store original content in metadata when stripping
class CommentStripper:
"""Remove comments from source code while preserving structure."""
@staticmethod
def strip_python_comments(content: str) -> str:
"""Strip Python comments (# style) but preserve docstrings.
Args:
content: Python source code
Returns:
Code with comments removed
"""
lines = content.splitlines(keepends=True)
result_lines: List[str] = []
in_string = False
string_char = None
for line in lines:
new_line = []
i = 0
while i < len(line):
char = line[i]
# Handle string literals
if char in ('"', "'") and not in_string:
# Check for triple quotes
if line[i:i+3] in ('"""', "'''"):
in_string = True
string_char = line[i:i+3]
new_line.append(line[i:i+3])
i += 3
continue
else:
in_string = True
string_char = char
elif in_string:
if string_char and len(string_char) == 3:
if line[i:i+3] == string_char:
in_string = False
new_line.append(line[i:i+3])
i += 3
string_char = None
continue
elif char == string_char:
# Check for escape
if i > 0 and line[i-1] != '\\':
in_string = False
string_char = None
# Handle comments (only outside strings)
if char == '#' and not in_string:
# Rest of line is comment, skip it
new_line.append('\n' if line.endswith('\n') else '')
break
new_line.append(char)
i += 1
result_lines.append(''.join(new_line))
return ''.join(result_lines)
@staticmethod
def strip_c_style_comments(content: str) -> str:
"""Strip C-style comments (// and /* */) from code.
Args:
content: Source code with C-style comments
Returns:
Code with comments removed
"""
result = []
i = 0
in_string = False
string_char = None
in_multiline_comment = False
while i < len(content):
# Handle multi-line comment end
if in_multiline_comment:
if content[i:i+2] == '*/':
in_multiline_comment = False
i += 2
continue
i += 1
continue
char = content[i]
# Handle string literals
if char in ('"', "'", '`') and not in_string:
in_string = True
string_char = char
result.append(char)
i += 1
continue
elif in_string:
result.append(char)
if char == string_char and (i == 0 or content[i-1] != '\\'):
in_string = False
string_char = None
i += 1
continue
# Handle comments
if content[i:i+2] == '//':
# Single line comment - skip to end of line
while i < len(content) and content[i] != '\n':
i += 1
if i < len(content):
result.append('\n')
i += 1
continue
if content[i:i+2] == '/*':
in_multiline_comment = True
i += 2
continue
result.append(char)
i += 1
return ''.join(result)
@classmethod
def strip_comments(cls, content: str, language: str) -> str:
"""Strip comments based on language.
Args:
content: Source code content
language: Programming language
Returns:
Code with comments removed
"""
if language == "python":
return cls.strip_python_comments(content)
elif language in {"javascript", "typescript", "java", "c", "cpp", "go", "rust"}:
return cls.strip_c_style_comments(content)
return content
class DocstringStripper:
"""Remove docstrings from source code."""
@staticmethod
def strip_python_docstrings(content: str) -> str:
"""Strip Python docstrings (triple-quoted strings at module/class/function level).
Args:
content: Python source code
Returns:
Code with docstrings removed
"""
lines = content.splitlines(keepends=True)
result_lines: List[str] = []
i = 0
while i < len(lines):
line = lines[i]
stripped = line.strip()
# Check for docstring start
if stripped.startswith('"""') or stripped.startswith("'''"):
quote_type = '"""' if stripped.startswith('"""') else "'''"
# Single line docstring
if stripped.count(quote_type) >= 2:
# Skip this line (docstring)
i += 1
continue
# Multi-line docstring - skip until closing
i += 1
while i < len(lines):
if quote_type in lines[i]:
i += 1
break
i += 1
continue
result_lines.append(line)
i += 1
return ''.join(result_lines)
@staticmethod
def strip_jsdoc_comments(content: str) -> str:
"""Strip JSDoc comments (/** ... */) from code.
Args:
content: JavaScript/TypeScript source code
Returns:
Code with JSDoc comments removed
"""
result = []
i = 0
in_jsdoc = False
while i < len(content):
if in_jsdoc:
if content[i:i+2] == '*/':
in_jsdoc = False
i += 2
continue
i += 1
continue
# Check for JSDoc start (/** but not /*)
if content[i:i+3] == '/**':
in_jsdoc = True
i += 3
continue
result.append(content[i])
i += 1
return ''.join(result)
@classmethod
def strip_docstrings(cls, content: str, language: str) -> str:
"""Strip docstrings based on language.
Args:
content: Source code content
language: Programming language
Returns:
Code with docstrings removed
"""
if language == "python":
return cls.strip_python_docstrings(content)
elif language in {"javascript", "typescript"}:
return cls.strip_jsdoc_comments(content)
return content
class Chunker:
"""Chunk code files for semantic embedding."""
def __init__(self, config: ChunkConfig | None = None) -> None:
self.config = config or ChunkConfig()
self._tokenizer = get_default_tokenizer()
self._comment_stripper = CommentStripper()
self._docstring_stripper = DocstringStripper()
def _process_content(self, content: str, language: str) -> Tuple[str, Optional[str]]:
"""Process chunk content by stripping comments/docstrings if configured.
Args:
content: Original chunk content
language: Programming language
Returns:
Tuple of (processed_content, original_content_if_preserved)
"""
original = content if self.config.preserve_original else None
processed = content
if self.config.strip_comments:
processed = self._comment_stripper.strip_comments(processed, language)
if self.config.strip_docstrings:
processed = self._docstring_stripper.strip_docstrings(processed, language)
# If nothing changed, don't store original
if processed == content:
original = None
return processed, original
def _estimate_token_count(self, text: str) -> int:
"""Estimate token count based on config.
If skip_token_count is True, uses character-based estimation (char/4).
Otherwise, uses accurate tiktoken encoding.
Args:
text: Text to count tokens for
Returns:
Estimated token count
"""
if self.config.skip_token_count:
# Fast character-based estimation: ~4 chars per token
return max(1, len(text) // 4)
return self._tokenizer.count_tokens(text)
def chunk_by_symbol(
self,
content: str,
symbols: List[Symbol],
file_path: str | Path,
language: str,
symbol_token_counts: Optional[dict[str, int]] = None,
) -> List[SemanticChunk]:
"""Chunk code by extracted symbols (functions, classes).
Each symbol becomes one chunk with its full content.
Large symbols exceeding max_chunk_size are recursively split using sliding window.
Args:
content: Source code content
symbols: List of extracted symbols
file_path: Path to source file
language: Programming language
symbol_token_counts: Optional dict mapping symbol names to token counts
"""
chunks: List[SemanticChunk] = []
lines = content.splitlines(keepends=True)
for symbol in symbols:
start_line, end_line = symbol.range
# Convert to 0-indexed
start_idx = max(0, start_line - 1)
end_idx = min(len(lines), end_line)
chunk_content = "".join(lines[start_idx:end_idx])
if len(chunk_content.strip()) < self.config.min_chunk_size:
continue
# Check if symbol content exceeds max_chunk_size
if len(chunk_content) > self.config.max_chunk_size:
# Create line mapping for correct line number tracking
line_mapping = list(range(start_line, end_line + 1))
# Use sliding window to split large symbol
sub_chunks = self.chunk_sliding_window(
chunk_content,
file_path=file_path,
language=language,
line_mapping=line_mapping
)
# Update sub_chunks with parent symbol metadata
for sub_chunk in sub_chunks:
sub_chunk.metadata["symbol_name"] = symbol.name
sub_chunk.metadata["symbol_kind"] = symbol.kind
sub_chunk.metadata["strategy"] = "symbol_split"
sub_chunk.metadata["chunk_type"] = "code"
sub_chunk.metadata["parent_symbol_range"] = (start_line, end_line)
chunks.extend(sub_chunks)
else:
# Process content (strip comments/docstrings if configured)
processed_content, original_content = self._process_content(chunk_content, language)
# Skip if processed content is too small
if len(processed_content.strip()) < self.config.min_chunk_size:
continue
# Calculate token count if not provided
token_count = None
if symbol_token_counts and symbol.name in symbol_token_counts:
token_count = symbol_token_counts[symbol.name]
else:
token_count = self._estimate_token_count(processed_content)
metadata = {
"file": str(file_path),
"language": language,
"symbol_name": symbol.name,
"symbol_kind": symbol.kind,
"start_line": start_line,
"end_line": end_line,
"strategy": "symbol",
"chunk_type": "code",
"token_count": token_count,
}
# Store original content if it was modified
if original_content is not None:
metadata["original_content"] = original_content
chunks.append(SemanticChunk(
content=processed_content,
embedding=None,
metadata=metadata
))
return chunks
def chunk_sliding_window(
self,
content: str,
file_path: str | Path,
language: str,
line_mapping: Optional[List[int]] = None,
) -> List[SemanticChunk]:
"""Chunk code using sliding window approach.
Used for files without clear symbol boundaries or very long functions.
Args:
content: Source code content
file_path: Path to source file
language: Programming language
line_mapping: Optional list mapping content line indices to original line numbers
(1-indexed). If provided, line_mapping[i] is the original line number
for the i-th line in content.
"""
chunks: List[SemanticChunk] = []
lines = content.splitlines(keepends=True)
if not lines:
return chunks
# Calculate lines per chunk based on average line length
avg_line_len = len(content) / max(len(lines), 1)
lines_per_chunk = max(10, int(self.config.max_chunk_size / max(avg_line_len, 1)))
overlap_lines = max(2, int(self.config.overlap / max(avg_line_len, 1)))
# Ensure overlap is less than chunk size to prevent infinite loop
overlap_lines = min(overlap_lines, lines_per_chunk - 1)
start = 0
chunk_idx = 0
while start < len(lines):
end = min(start + lines_per_chunk, len(lines))
chunk_content = "".join(lines[start:end])
if len(chunk_content.strip()) >= self.config.min_chunk_size:
# Process content (strip comments/docstrings if configured)
processed_content, original_content = self._process_content(chunk_content, language)
# Skip if processed content is too small
if len(processed_content.strip()) < self.config.min_chunk_size:
# Move window forward
step = lines_per_chunk - overlap_lines
if step <= 0:
step = 1
start += step
continue
token_count = self._estimate_token_count(processed_content)
# Calculate correct line numbers
if line_mapping:
# Use line mapping to get original line numbers
start_line = line_mapping[start]
end_line = line_mapping[end - 1]
else:
# Default behavior: treat content as starting at line 1
start_line = start + 1
end_line = end
metadata = {
"file": str(file_path),
"language": language,
"chunk_index": chunk_idx,
"start_line": start_line,
"end_line": end_line,
"strategy": "sliding_window",
"chunk_type": "code",
"token_count": token_count,
}
# Store original content if it was modified
if original_content is not None:
metadata["original_content"] = original_content
chunks.append(SemanticChunk(
content=processed_content,
embedding=None,
metadata=metadata
))
chunk_idx += 1
# Move window, accounting for overlap
step = lines_per_chunk - overlap_lines
if step <= 0:
step = 1 # Failsafe to prevent infinite loop
start += step
# Break if we've reached the end
if end >= len(lines):
break
return chunks
def chunk_file(
self,
content: str,
symbols: List[Symbol],
file_path: str | Path,
language: str,
symbol_token_counts: Optional[dict[str, int]] = None,
) -> List[SemanticChunk]:
"""Chunk a file using the best strategy.
Uses symbol-based chunking if symbols available,
falls back to sliding window for files without symbols.
Args:
content: Source code content
symbols: List of extracted symbols
file_path: Path to source file
language: Programming language
symbol_token_counts: Optional dict mapping symbol names to token counts
"""
if symbols:
return self.chunk_by_symbol(content, symbols, file_path, language, symbol_token_counts)
return self.chunk_sliding_window(content, file_path, language)
class DocstringExtractor:
"""Extract docstrings from source code."""
@staticmethod
def extract_python_docstrings(content: str) -> List[Tuple[str, int, int]]:
"""Extract Python docstrings with their line ranges.
Returns: List of (docstring_content, start_line, end_line) tuples
"""
docstrings: List[Tuple[str, int, int]] = []
lines = content.splitlines(keepends=True)
i = 0
while i < len(lines):
line = lines[i]
stripped = line.strip()
if stripped.startswith('"""') or stripped.startswith("'''"):
quote_type = '"""' if stripped.startswith('"""') else "'''"
start_line = i + 1
if stripped.count(quote_type) >= 2:
docstring_content = line
end_line = i + 1
docstrings.append((docstring_content, start_line, end_line))
i += 1
continue
docstring_lines = [line]
i += 1
while i < len(lines):
docstring_lines.append(lines[i])
if quote_type in lines[i]:
break
i += 1
end_line = i + 1
docstring_content = "".join(docstring_lines)
docstrings.append((docstring_content, start_line, end_line))
i += 1
return docstrings
@staticmethod
def extract_jsdoc_comments(content: str) -> List[Tuple[str, int, int]]:
"""Extract JSDoc comments with their line ranges.
Returns: List of (comment_content, start_line, end_line) tuples
"""
comments: List[Tuple[str, int, int]] = []
lines = content.splitlines(keepends=True)
i = 0
while i < len(lines):
line = lines[i]
stripped = line.strip()
if stripped.startswith('/**'):
start_line = i + 1
comment_lines = [line]
i += 1
while i < len(lines):
comment_lines.append(lines[i])
if '*/' in lines[i]:
break
i += 1
end_line = i + 1
comment_content = "".join(comment_lines)
comments.append((comment_content, start_line, end_line))
i += 1
return comments
@classmethod
def extract_docstrings(
cls,
content: str,
language: str
) -> List[Tuple[str, int, int]]:
"""Extract docstrings based on language.
Returns: List of (docstring_content, start_line, end_line) tuples
"""
if language == "python":
return cls.extract_python_docstrings(content)
elif language in {"javascript", "typescript"}:
return cls.extract_jsdoc_comments(content)
return []
class HybridChunker:
"""Hybrid chunker that prioritizes docstrings before symbol-based chunking.
Composition-based strategy that:
1. Extracts docstrings as dedicated chunks
2. For remaining code, uses base chunker (symbol or sliding window)
"""
def __init__(
self,
base_chunker: Chunker | None = None,
config: ChunkConfig | None = None
) -> None:
"""Initialize hybrid chunker.
Args:
base_chunker: Chunker to use for non-docstring content
config: Configuration for chunking
"""
self.config = config or ChunkConfig()
self.base_chunker = base_chunker or Chunker(self.config)
self.docstring_extractor = DocstringExtractor()
def _get_excluded_line_ranges(
self,
docstrings: List[Tuple[str, int, int]]
) -> set[int]:
"""Get set of line numbers that are part of docstrings."""
excluded_lines: set[int] = set()
for _, start_line, end_line in docstrings:
for line_num in range(start_line, end_line + 1):
excluded_lines.add(line_num)
return excluded_lines
def _filter_symbols_outside_docstrings(
self,
symbols: List[Symbol],
excluded_lines: set[int]
) -> List[Symbol]:
"""Filter symbols to exclude those completely within docstrings."""
filtered: List[Symbol] = []
for symbol in symbols:
start_line, end_line = symbol.range
symbol_lines = set(range(start_line, end_line + 1))
if not symbol_lines.issubset(excluded_lines):
filtered.append(symbol)
return filtered
def _find_parent_symbol(
self,
start_line: int,
end_line: int,
symbols: List[Symbol],
) -> Optional[Symbol]:
"""Find the smallest symbol range that fully contains a docstring span."""
candidates: List[Symbol] = []
for symbol in symbols:
sym_start, sym_end = symbol.range
if sym_start <= start_line and end_line <= sym_end:
candidates.append(symbol)
if not candidates:
return None
return min(candidates, key=lambda s: (s.range[1] - s.range[0], s.range[0]))
def chunk_file(
self,
content: str,
symbols: List[Symbol],
file_path: str | Path,
language: str,
symbol_token_counts: Optional[dict[str, int]] = None,
) -> List[SemanticChunk]:
"""Chunk file using hybrid strategy.
Extracts docstrings first, then chunks remaining code.
Args:
content: Source code content
symbols: List of extracted symbols
file_path: Path to source file
language: Programming language
symbol_token_counts: Optional dict mapping symbol names to token counts
"""
chunks: List[SemanticChunk] = []
# Step 1: Extract docstrings as dedicated chunks
docstrings: List[Tuple[str, int, int]] = []
if language == "python":
# Fast path: avoid expensive docstring extraction if delimiters are absent.
if '"""' in content or "'''" in content:
docstrings = self.docstring_extractor.extract_docstrings(content, language)
elif language in {"javascript", "typescript"}:
if "/**" in content:
docstrings = self.docstring_extractor.extract_docstrings(content, language)
else:
docstrings = self.docstring_extractor.extract_docstrings(content, language)
# Fast path: no docstrings -> delegate to base chunker directly.
if not docstrings:
if symbols:
base_chunks = self.base_chunker.chunk_by_symbol(
content, symbols, file_path, language, symbol_token_counts
)
else:
base_chunks = self.base_chunker.chunk_sliding_window(content, file_path, language)
for chunk in base_chunks:
chunk.metadata["strategy"] = "hybrid"
chunk.metadata["chunk_type"] = "code"
return base_chunks
for docstring_content, start_line, end_line in docstrings:
if len(docstring_content.strip()) >= self.config.min_chunk_size:
parent_symbol = self._find_parent_symbol(start_line, end_line, symbols)
# Use base chunker's token estimation method
token_count = self.base_chunker._estimate_token_count(docstring_content)
metadata = {
"file": str(file_path),
"language": language,
"chunk_type": "docstring",
"start_line": start_line,
"end_line": end_line,
"strategy": "hybrid",
"token_count": token_count,
}
if parent_symbol is not None:
metadata["parent_symbol"] = parent_symbol.name
metadata["parent_symbol_kind"] = parent_symbol.kind
metadata["parent_symbol_range"] = parent_symbol.range
chunks.append(SemanticChunk(
content=docstring_content,
embedding=None,
metadata=metadata
))
# Step 2: Get line ranges occupied by docstrings
excluded_lines = self._get_excluded_line_ranges(docstrings)
# Step 3: Filter symbols to exclude docstring-only ranges
filtered_symbols = self._filter_symbols_outside_docstrings(symbols, excluded_lines)
# Step 4: Chunk remaining content using base chunker
if filtered_symbols:
base_chunks = self.base_chunker.chunk_by_symbol(
content, filtered_symbols, file_path, language, symbol_token_counts
)
for chunk in base_chunks:
chunk.metadata["strategy"] = "hybrid"
chunk.metadata["chunk_type"] = "code"
chunks.append(chunk)
else:
lines = content.splitlines(keepends=True)
remaining_lines: List[str] = []
for i, line in enumerate(lines, start=1):
if i not in excluded_lines:
remaining_lines.append(line)
if remaining_lines:
remaining_content = "".join(remaining_lines)
if len(remaining_content.strip()) >= self.config.min_chunk_size:
base_chunks = self.base_chunker.chunk_sliding_window(
remaining_content, file_path, language
)
for chunk in base_chunks:
chunk.metadata["strategy"] = "hybrid"
chunk.metadata["chunk_type"] = "code"
chunks.append(chunk)
return chunks