mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-13 02:41:50 +08:00
Refactor code structure and remove redundant changes
This commit is contained in:
158
codex-lens/build/lib/codexlens/semantic/factory.py
Normal file
158
codex-lens/build/lib/codexlens/semantic/factory.py
Normal file
@@ -0,0 +1,158 @@
|
||||
"""Factory for creating embedders.
|
||||
|
||||
Provides a unified interface for instantiating different embedder backends.
|
||||
Includes caching to avoid repeated model loading overhead.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import threading
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from .base import BaseEmbedder
|
||||
|
||||
# Module-level cache for embedder instances
|
||||
# Key: (backend, profile, model, use_gpu) -> embedder instance
|
||||
_embedder_cache: Dict[tuple, BaseEmbedder] = {}
|
||||
_cache_lock = threading.Lock()
|
||||
_logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_embedder(
|
||||
backend: str = "fastembed",
|
||||
profile: str = "code",
|
||||
model: str = "default",
|
||||
use_gpu: bool = True,
|
||||
endpoints: Optional[List[Dict[str, Any]]] = None,
|
||||
strategy: str = "latency_aware",
|
||||
cooldown: float = 60.0,
|
||||
**kwargs: Any,
|
||||
) -> BaseEmbedder:
|
||||
"""Factory function to create embedder based on backend.
|
||||
|
||||
Args:
|
||||
backend: Embedder backend to use. Options:
|
||||
- "fastembed": Use fastembed (ONNX-based) embedder (default)
|
||||
- "litellm": Use ccw-litellm embedder
|
||||
profile: Model profile for fastembed backend ("fast", "code", "multilingual", "balanced")
|
||||
Used only when backend="fastembed". Default: "code"
|
||||
model: Model identifier for litellm backend.
|
||||
Used only when backend="litellm". Default: "default"
|
||||
use_gpu: Whether to use GPU acceleration when available (default: True).
|
||||
Used only when backend="fastembed".
|
||||
endpoints: Optional list of endpoint configurations for multi-endpoint load balancing.
|
||||
Each endpoint is a dict with keys: model, api_key, api_base, weight.
|
||||
Used only when backend="litellm" and multiple endpoints provided.
|
||||
strategy: Selection strategy for multi-endpoint mode:
|
||||
"round_robin", "latency_aware", "weighted_random".
|
||||
Default: "latency_aware"
|
||||
cooldown: Default cooldown seconds for rate-limited endpoints (default: 60.0)
|
||||
**kwargs: Additional backend-specific arguments
|
||||
|
||||
Returns:
|
||||
BaseEmbedder: Configured embedder instance
|
||||
|
||||
Raises:
|
||||
ValueError: If backend is not recognized
|
||||
ImportError: If required backend dependencies are not installed
|
||||
|
||||
Examples:
|
||||
Create fastembed embedder with code profile:
|
||||
>>> embedder = get_embedder(backend="fastembed", profile="code")
|
||||
|
||||
Create fastembed embedder with fast profile and CPU only:
|
||||
>>> embedder = get_embedder(backend="fastembed", profile="fast", use_gpu=False)
|
||||
|
||||
Create litellm embedder:
|
||||
>>> embedder = get_embedder(backend="litellm", model="text-embedding-3-small")
|
||||
|
||||
Create rotational embedder with multiple endpoints:
|
||||
>>> endpoints = [
|
||||
... {"model": "openai/text-embedding-3-small", "api_key": "sk-..."},
|
||||
... {"model": "azure/my-embedding", "api_base": "https://...", "api_key": "..."},
|
||||
... ]
|
||||
>>> embedder = get_embedder(backend="litellm", endpoints=endpoints)
|
||||
"""
|
||||
# Build cache key from immutable configuration
|
||||
if backend == "fastembed":
|
||||
cache_key = ("fastembed", profile, None, use_gpu)
|
||||
elif backend == "litellm":
|
||||
# For litellm, use model as part of cache key
|
||||
# Multi-endpoint mode is not cached as it's more complex
|
||||
if endpoints and len(endpoints) > 1:
|
||||
cache_key = None # Skip cache for multi-endpoint
|
||||
else:
|
||||
effective_model = endpoints[0]["model"] if endpoints else model
|
||||
cache_key = ("litellm", None, effective_model, None)
|
||||
else:
|
||||
cache_key = None
|
||||
|
||||
# Check cache first (thread-safe)
|
||||
if cache_key is not None:
|
||||
with _cache_lock:
|
||||
if cache_key in _embedder_cache:
|
||||
_logger.debug("Returning cached embedder for %s", cache_key)
|
||||
return _embedder_cache[cache_key]
|
||||
|
||||
# Create new embedder instance
|
||||
embedder: Optional[BaseEmbedder] = None
|
||||
|
||||
if backend == "fastembed":
|
||||
from .embedder import Embedder
|
||||
embedder = Embedder(profile=profile, use_gpu=use_gpu, **kwargs)
|
||||
elif backend == "litellm":
|
||||
# Check if multi-endpoint mode is requested
|
||||
if endpoints and len(endpoints) > 1:
|
||||
from .rotational_embedder import create_rotational_embedder
|
||||
# Multi-endpoint is not cached
|
||||
return create_rotational_embedder(
|
||||
endpoints_config=endpoints,
|
||||
strategy=strategy,
|
||||
default_cooldown=cooldown,
|
||||
)
|
||||
elif endpoints and len(endpoints) == 1:
|
||||
# Single endpoint in list - use it directly
|
||||
ep = endpoints[0]
|
||||
ep_kwargs = {**kwargs}
|
||||
if "api_key" in ep:
|
||||
ep_kwargs["api_key"] = ep["api_key"]
|
||||
if "api_base" in ep:
|
||||
ep_kwargs["api_base"] = ep["api_base"]
|
||||
from .litellm_embedder import LiteLLMEmbedderWrapper
|
||||
embedder = LiteLLMEmbedderWrapper(model=ep["model"], **ep_kwargs)
|
||||
else:
|
||||
# No endpoints list - use model parameter
|
||||
from .litellm_embedder import LiteLLMEmbedderWrapper
|
||||
embedder = LiteLLMEmbedderWrapper(model=model, **kwargs)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unknown backend: {backend}. "
|
||||
f"Supported backends: 'fastembed', 'litellm'"
|
||||
)
|
||||
|
||||
# Cache the embedder for future use (thread-safe)
|
||||
if cache_key is not None and embedder is not None:
|
||||
with _cache_lock:
|
||||
# Double-check to avoid race condition
|
||||
if cache_key not in _embedder_cache:
|
||||
_embedder_cache[cache_key] = embedder
|
||||
_logger.debug("Cached new embedder for %s", cache_key)
|
||||
else:
|
||||
# Another thread created it already, use that one
|
||||
embedder = _embedder_cache[cache_key]
|
||||
|
||||
return embedder # type: ignore
|
||||
|
||||
|
||||
def clear_embedder_cache() -> int:
|
||||
"""Clear the embedder cache.
|
||||
|
||||
Returns:
|
||||
Number of embedders cleared from cache
|
||||
"""
|
||||
with _cache_lock:
|
||||
count = len(_embedder_cache)
|
||||
_embedder_cache.clear()
|
||||
_logger.debug("Cleared %d embedders from cache", count)
|
||||
return count
|
||||
Reference in New Issue
Block a user