1 Commits

Author SHA1 Message Date
catlog22
e21d801523 feat: Add multi-type embedding backends for cascade retrieval
- Implemented BinaryEmbeddingBackend for fast coarse filtering using 256-dimensional binary vectors.
- Developed DenseEmbeddingBackend for high-precision dense vectors (2048 dimensions) for reranking.
- Created CascadeEmbeddingBackend to combine binary and dense embeddings for two-stage retrieval.
- Introduced utility functions for embedding conversion and distance computation.

chore: Migration 010 - Add multi-vector storage support

- Added 'chunks' table to support multi-vector embeddings for cascade retrieval.
- Included new columns: embedding_binary (256-dim) and embedding_dense (2048-dim) for efficient storage.
- Implemented upgrade and downgrade functions to manage schema changes and data migration.
2026-01-02 10:52:43 +08:00