--- name: gather description: Intelligently collect project context using context-search-agent based on task description, packages into standardized JSON argument-hint: "--session WFS-session-id \"task description\"" examples: - /workflow:tools:context-gather --session WFS-user-auth "Implement user authentication system" - /workflow:tools:context-gather --session WFS-payment "Refactor payment module API" - /workflow:tools:context-gather --session WFS-bugfix "Fix login validation error" allowed-tools: Task(*), Read(*), Glob(*) --- # Context Gather Command (/workflow:tools:context-gather) ## Overview Orchestrator command that invokes `context-search-agent` to gather comprehensive project context for implementation planning. Generates standardized `context-package.json` with codebase analysis, dependencies, and conflict detection. ## Core Philosophy - **Agent Delegation**: Delegate all discovery to `context-search-agent` for autonomous execution - **Detection-First**: Check for existing context-package before executing - **Plan Mode**: Full comprehensive analysis (vs lightweight brainstorm mode) - **Standardized Output**: Generate `.workflow/active/{session}/.process/context-package.json` ## Execution Process ``` Input Parsing: ├─ Parse flags: --session └─ Parse: task_description (required) Step 1: Context-Package Detection └─ Decision (existing package): ├─ Valid package exists → Return existing (skip execution) └─ No valid package → Continue to Step 2 Step 2: Complexity Assessment & Parallel Explore ├─ Analyze task_description → classify Low/Medium/High ├─ Select exploration angles (1-4 based on complexity) ├─ Launch N cli-explore-agents in parallel │ └─ Each outputs: exploration-{angle}.json └─ Generate explorations-manifest.json Step 3: Invoke Context-Search Agent (with exploration input) ├─ Phase 1: Initialization & Pre-Analysis ├─ Phase 2: Multi-Source Discovery │ ├─ Track 0: Exploration Synthesis (prioritize & deduplicate) │ ├─ Track 1-4: Existing tracks └─ Phase 3: Synthesis & Packaging └─ Generate context-package.json with exploration_results Step 4: Output Verification └─ Verify context-package.json contains exploration_results ``` ## Execution Flow ### Step 1: Context-Package Detection **Execute First** - Check if valid package already exists: ```javascript const contextPackagePath = `.workflow/${session_id}/.process/context-package.json`; if (file_exists(contextPackagePath)) { const existing = Read(contextPackagePath); // Validate package belongs to current session if (existing?.metadata?.session_id === session_id) { console.log("✅ Valid context-package found for session:", session_id); console.log("📊 Stats:", existing.statistics); console.log("⚠️ Conflict Risk:", existing.conflict_detection.risk_level); return existing; // Skip execution, return existing } else { console.warn("⚠️ Invalid session_id in existing package, re-generating..."); } } ``` ### Step 2: Complexity Assessment & Parallel Explore **Only execute if Step 1 finds no valid package** ```javascript // 2.1 Complexity Assessment function analyzeTaskComplexity(taskDescription) { const text = taskDescription.toLowerCase(); if (/architect|refactor|restructure|modular|cross-module/.test(text)) return 'High'; if (/multiple|several|integrate|migrate|extend/.test(text)) return 'Medium'; return 'Low'; } const ANGLE_PRESETS = { architecture: ['architecture', 'dependencies', 'modularity', 'integration-points'], security: ['security', 'auth-patterns', 'dataflow', 'validation'], performance: ['performance', 'bottlenecks', 'caching', 'data-access'], bugfix: ['error-handling', 'dataflow', 'state-management', 'edge-cases'], feature: ['patterns', 'integration-points', 'testing', 'dependencies'], refactor: ['architecture', 'patterns', 'dependencies', 'testing'] }; function selectAngles(taskDescription, complexity) { const text = taskDescription.toLowerCase(); let preset = 'feature'; if (/refactor|architect|restructure/.test(text)) preset = 'architecture'; else if (/security|auth|permission/.test(text)) preset = 'security'; else if (/performance|slow|optimi/.test(text)) preset = 'performance'; else if (/fix|bug|error|issue/.test(text)) preset = 'bugfix'; const count = complexity === 'High' ? 4 : (complexity === 'Medium' ? 3 : 1); return ANGLE_PRESETS[preset].slice(0, count); } const complexity = analyzeTaskComplexity(task_description); const selectedAngles = selectAngles(task_description, complexity); const sessionFolder = `.workflow/active/${session_id}/.process`; // 2.2 Launch Parallel Explore Agents const explorationTasks = selectedAngles.map((angle, index) => Task( subagent_type="cli-explore-agent", run_in_background=false, description=`Explore: ${angle}`, prompt=` ## Task Objective Execute **${angle}** exploration for task planning context. Analyze codebase from this specific angle to discover relevant structure, patterns, and constraints. ## Assigned Context - **Exploration Angle**: ${angle} - **Task Description**: ${task_description} - **Session ID**: ${session_id} - **Exploration Index**: ${index + 1} of ${selectedAngles.length} - **Output File**: ${sessionFolder}/exploration-${angle}.json ## MANDATORY FIRST STEPS (Execute by Agent) **You (cli-explore-agent) MUST execute these steps in order:** 1. Run: ccw tool exec get_modules_by_depth '{}' (project structure) 2. Run: rg -l "{keyword_from_task}" --type ts (locate relevant files) 3. Execute: cat ~/.ccw/workflows/cli-templates/schemas/explore-json-schema.json (get output schema reference) ## Exploration Strategy (${angle} focus) **Step 1: Structural Scan** (Bash) - get_modules_by_depth.sh → identify modules related to ${angle} - find/rg → locate files relevant to ${angle} aspect - Analyze imports/dependencies from ${angle} perspective **Step 2: Semantic Analysis** (Gemini CLI) - How does existing code handle ${angle} concerns? - What patterns are used for ${angle}? - Where would new code integrate from ${angle} viewpoint? **Step 3: Write Output** - Consolidate ${angle} findings into JSON - Identify ${angle}-specific clarification needs ## Expected Output **File**: ${sessionFolder}/exploration-${angle}.json **Schema Reference**: Schema obtained in MANDATORY FIRST STEPS step 3, follow schema exactly **Required Fields** (all ${angle} focused): - project_structure: Modules/architecture relevant to ${angle} - relevant_files: Files affected from ${angle} perspective **IMPORTANT**: Use object format with relevance scores for synthesis: \`[{path: "src/file.ts", relevance: 0.85, rationale: "Core ${angle} logic"}]\` Scores: 0.7+ high priority, 0.5-0.7 medium, <0.5 low - patterns: ${angle}-related patterns to follow - dependencies: Dependencies relevant to ${angle} - integration_points: Where to integrate from ${angle} viewpoint (include file:line locations) - constraints: ${angle}-specific limitations/conventions - clarification_needs: ${angle}-related ambiguities (options array + recommended index) - _metadata.exploration_angle: "${angle}" ## Success Criteria - [ ] Schema obtained via cat explore-json-schema.json - [ ] get_modules_by_depth.sh executed - [ ] At least 3 relevant files identified with ${angle} rationale - [ ] Patterns are actionable (code examples, not generic advice) - [ ] Integration points include file:line locations - [ ] Constraints are project-specific to ${angle} - [ ] JSON output follows schema exactly - [ ] clarification_needs includes options + recommended ## Output Write: ${sessionFolder}/exploration-${angle}.json Return: 2-3 sentence summary of ${angle} findings ` ) ); // 2.3 Generate Manifest after all complete const explorationFiles = bash(`find ${sessionFolder} -name "exploration-*.json" -type f`).split('\n').filter(f => f.trim()); const explorationManifest = { session_id, task_description, timestamp: new Date().toISOString(), complexity, exploration_count: selectedAngles.length, angles_explored: selectedAngles, explorations: explorationFiles.map(file => { const data = JSON.parse(Read(file)); return { angle: data._metadata.exploration_angle, file: file.split('/').pop(), path: file, index: data._metadata.exploration_index }; }) }; Write(`${sessionFolder}/explorations-manifest.json`, JSON.stringify(explorationManifest, null, 2)); ``` ### Step 3: Invoke Context-Search Agent **Only execute after Step 2 completes** ```javascript // Load user intent from planning-notes.md (from Phase 1) const planningNotesPath = `.workflow/active/${session_id}/planning-notes.md`; let userIntent = { goal: task_description, key_constraints: "None specified" }; if (file_exists(planningNotesPath)) { const notesContent = Read(planningNotesPath); const goalMatch = notesContent.match(/\*\*GOAL\*\*:\s*(.+)/); const constraintsMatch = notesContent.match(/\*\*KEY_CONSTRAINTS\*\*:\s*(.+)/); if (goalMatch) userIntent.goal = goalMatch[1].trim(); if (constraintsMatch) userIntent.key_constraints = constraintsMatch[1].trim(); } Task( subagent_type="context-search-agent", run_in_background=false, description="Gather comprehensive context for plan", prompt=` ## Execution Mode **PLAN MODE** (Comprehensive) - Full Phase 1-3 execution with priority sorting ## Session Information - **Session ID**: ${session_id} - **Task Description**: ${task_description} - **Output Path**: .workflow/${session_id}/.process/context-package.json ## User Intent (from Phase 1 - Planning Notes) **GOAL**: ${userIntent.goal} **KEY_CONSTRAINTS**: ${userIntent.key_constraints} This is the PRIMARY context source - all subsequent analysis must align with user intent. ## Exploration Input (from Step 2) - **Manifest**: ${sessionFolder}/explorations-manifest.json - **Exploration Count**: ${explorationManifest.exploration_count} - **Angles**: ${explorationManifest.angles_explored.join(', ')} - **Complexity**: ${complexity} ## Mission Execute complete context-search-agent workflow for implementation planning: ### Phase 1: Initialization & Pre-Analysis 1. **Project State Loading**: - Read and parse `.workflow/project-tech.json`. Use its `overview` section as the foundational `project_context`. This is your primary source for architecture, tech stack, and key components. - Read and parse `.workflow/project-guidelines.json`. Load `conventions`, `constraints`, and `learnings` into a `project_guidelines` section. - If files don't exist, proceed with fresh analysis. 2. **Detection**: Check for existing context-package (early exit if valid) 3. **Foundation**: Initialize CodexLens, get project structure, load docs 4. **Analysis**: Extract keywords, determine scope, classify complexity based on task description and project state ### Phase 2: Multi-Source Context Discovery Execute all discovery tracks (WITH USER INTENT INTEGRATION): - **Track -1**: User Intent & Priority Foundation (EXECUTE FIRST) - Load user intent (GOAL, KEY_CONSTRAINTS) from session input - Map user requirements to codebase entities (files, modules, patterns) - Establish baseline priority scores based on user goal alignment - Output: user_intent_mapping.json with preliminary priority scores - **Track 0**: Exploration Synthesis (load ${sessionFolder}/explorations-manifest.json, prioritize critical_files, deduplicate patterns/integration_points) - **Track 1**: Historical archive analysis (query manifest.json for lessons learned) - **Track 2**: Reference documentation (CLAUDE.md, architecture docs) - **Track 3**: Web examples (use Exa MCP for unfamiliar tech/APIs) - **Track 4**: Codebase analysis (5-layer discovery: files, content, patterns, deps, config/tests) ### Phase 3: Synthesis, Assessment & Packaging 1. Apply relevance scoring and build dependency graph 2. **Synthesize 5-source data** (including Track -1): Merge findings from all sources - Priority order: User Intent > Archive > Docs > Exploration > Code > Web - **Prioritize the context from `project-tech.json`** for architecture and tech stack unless code analysis reveals it's outdated 3. **Context Priority Sorting**: a. Combine scores from Track -1 (user intent alignment) + relevance scores + exploration critical_files b. Classify files into priority tiers: - **Critical** (score ≥ 0.85): Directly mentioned in user goal OR exploration critical_files - **High** (0.70-0.84): Key dependencies, patterns required for goal - **Medium** (0.50-0.69): Supporting files, indirect dependencies - **Low** (< 0.50): Contextual awareness only c. Generate dependency_order: Based on dependency graph + user goal sequence d. Document sorting_rationale: Explain prioritization logic 4. **Populate `project_context`**: Directly use the `overview` from `project-tech.json` to fill the `project_context` section. Include description, technology_stack, architecture, and key_components. 5. **Populate `project_guidelines`**: Load conventions, constraints, and learnings from `project-guidelines.json` into a dedicated section. 6. Integrate brainstorm artifacts (if .brainstorming/ exists, read content) 7. Perform conflict detection with risk assessment 8. **Inject historical conflicts** from archive analysis into conflict_detection 9. **Generate prioritized_context section**: ```json { "prioritized_context": { "user_intent": { "goal": "...", "scope": "...", "key_constraints": ["..."] }, "priority_tiers": { "critical": [{ "path": "...", "relevance": 0.95, "rationale": "..." }], "high": [...], "medium": [...], "low": [...] }, "dependency_order": ["module1", "module2", "module3"], "sorting_rationale": "Based on user goal alignment (Track -1), exploration critical files, and dependency graph analysis" } } ``` 10. Generate and validate context-package.json with prioritized_context field ## Output Requirements Complete context-package.json with: - **metadata**: task_description, keywords, complexity, tech_stack, session_id - **project_context**: description, technology_stack, architecture, key_components (sourced from `project-tech.json`) - **project_guidelines**: {conventions, constraints, quality_rules, learnings} (sourced from `project-guidelines.json`) - **assets**: {documentation[], source_code[], config[], tests[]} with relevance scores - **dependencies**: {internal[], external[]} with dependency graph - **brainstorm_artifacts**: {guidance_specification, role_analyses[], synthesis_output} with content - **conflict_detection**: {risk_level, risk_factors, affected_modules[], mitigation_strategy, historical_conflicts[]} - **exploration_results**: {manifest_path, exploration_count, angles, explorations[], aggregated_insights} (from Track 0) - **prioritized_context**: {user_intent, priority_tiers{critical, high, medium, low}, dependency_order[], sorting_rationale} ## Quality Validation Before completion verify: - [ ] Valid JSON format with all required fields - [ ] File relevance accuracy >80% - [ ] Dependency graph complete (max 2 transitive levels) - [ ] Conflict risk level calculated correctly - [ ] No sensitive data exposed - [ ] Total files ≤50 (prioritize high-relevance) ## Planning Notes Record (REQUIRED) After completing context-package.json, append a brief execution record to planning-notes.md: **File**: .workflow/active/${session_id}/planning-notes.md **Location**: Under "## Context Findings (Phase 2)" section **Format**: \`\`\` ### [Context-Search Agent] YYYY-MM-DD - **Note**: [智能补充:简短总结关键发现,如探索角度、关键文件、冲突风险等] \`\`\` Execute autonomously following agent documentation. Report completion with statistics. ` ) ``` ### Step 4: Output Verification After agent completes, verify output: ```javascript // Verify file was created const outputPath = `.workflow/${session_id}/.process/context-package.json`; if (!file_exists(outputPath)) { throw new Error("❌ Agent failed to generate context-package.json"); } // Verify exploration_results included const pkg = JSON.parse(Read(outputPath)); if (pkg.exploration_results?.exploration_count > 0) { console.log(`✅ Exploration results aggregated: ${pkg.exploration_results.exploration_count} angles`); } ``` ## Parameter Reference | Parameter | Type | Required | Description | |-----------|------|----------|-------------| | `--session` | string | ✅ | Workflow session ID (e.g., WFS-user-auth) | | `task_description` | string | ✅ | Detailed task description for context extraction | ## Output Schema Refer to `context-search-agent.md` Phase 3.7 for complete `context-package.json` schema. **Key Sections**: - **metadata**: Session info, keywords, complexity, tech stack - **project_context**: Architecture patterns, conventions, tech stack (populated from `project-tech.json`) - **project_guidelines**: Conventions, constraints, quality rules, learnings (populated from `project-guidelines.json`) - **assets**: Categorized files with relevance scores (documentation, source_code, config, tests) - **dependencies**: Internal and external dependency graphs - **brainstorm_artifacts**: Brainstorm documents with full content (if exists) - **conflict_detection**: Risk assessment with mitigation strategies and historical conflicts - **exploration_results**: Aggregated exploration insights (from parallel explore phase) - **prioritized_context**: Pre-sorted context with user intent and priority tiers (critical/high/medium/low) ## Notes - **Detection-first**: Always check for existing package before invoking agent - **User intent integration**: Load user intent from planning-notes.md (Phase 1 output) - **Output**: Generates `context-package.json` with `prioritized_context` field - **Plan-specific**: Use this for implementation planning; brainstorm mode uses direct agent call