# Memory Embedder - Quick Reference ## Installation ```bash pip install numpy codex-lens[semantic] ``` ## Commands ### Status ```bash python scripts/memory_embedder.py status ``` ### Embed All ```bash python scripts/memory_embedder.py embed ``` ### Embed Specific Source ```bash python scripts/memory_embedder.py embed --source-id CMEM-20250101-120000 ``` ### Re-embed (Force) ```bash python scripts/memory_embedder.py embed --force ``` ### Search ```bash python scripts/memory_embedder.py search "authentication flow" ``` ### Advanced Search ```bash python scripts/memory_embedder.py search "rate limiting" \ --top-k 5 \ --min-score 0.5 \ --type workflow ``` ## Database Path Find your database: ```bash # Linux/Mac ~/.ccw/projects//core-memory/core_memory.db # Windows %USERPROFILE%\.ccw\projects\\core-memory\core_memory.db ``` ## TypeScript Integration ```typescript import { execSync } from 'child_process'; // Status const status = JSON.parse( execSync(`python scripts/memory_embedder.py status "${dbPath}"`, { encoding: 'utf-8' }) ); // Embed const result = JSON.parse( execSync(`python scripts/memory_embedder.py embed "${dbPath}"`, { encoding: 'utf-8' }) ); // Search const matches = JSON.parse( execSync( `python scripts/memory_embedder.py search "${dbPath}" "query"`, { encoding: 'utf-8' } ) ); ``` ## Output Examples ### Status ```json { "total_chunks": 150, "embedded_chunks": 100, "pending_chunks": 50, "by_type": { "core_memory": {"total": 80, "embedded": 60, "pending": 20} } } ``` ### Embed ```json { "success": true, "chunks_processed": 50, "chunks_failed": 0, "elapsed_time": 12.34 } ``` ### Search ```json { "success": true, "matches": [ { "source_id": "WFS-20250101-auth", "source_type": "workflow", "chunk_index": 2, "content": "Implemented JWT authentication...", "score": 0.8542, "restore_command": "ccw session resume WFS-20250101-auth" } ] } ``` ## Source Types - `core_memory` - Strategic architectural context - `workflow` - Session-based development history - `cli_history` - Command execution logs ## Performance - Embedding: ~8 chunks/second - Search: ~0.1-0.5s for 1000 chunks - Model load: ~0.8s (cached) - Batch size: 8 (default, configurable)