--- name: load description: Delegate to universal-executor agent to analyze project via Gemini/Qwen CLI and return JSON core content package for task context argument-hint: "[--tool gemini|qwen] \"task context description\"" allowed-tools: Task(*), Bash(*) examples: - /memory:load "在当前前端基础上开发用户认证功能" - /memory:load --tool qwen "重构支付模块API" --- # Memory Load Command (/memory:load) ## 1. Overview The `memory:load` command **delegates to a universal-executor agent** to analyze the project and return a structured "Core Content Pack". This pack is loaded into the main thread's memory, providing essential context for subsequent agent operations while minimizing token consumption. **Core Philosophy**: - **Agent-Driven**: Fully delegates execution to universal-executor agent - **Read-Only Analysis**: Does not modify code, only extracts context - **Structured Output**: Returns standardized JSON content package - **Memory Optimization**: Package loaded directly into main thread memory - **Token Efficiency**: CLI analysis executed within agent to save tokens ## 2. Parameters - `"task context description"` (Required): Task description to guide context extraction - Example: "在当前前端基础上开发用户认证功能" - Example: "重构支付模块API" - Example: "修复数据库查询性能问题" - `--tool ` (Optional): Specify CLI tool for agent to use (default: gemini) - gemini: Large context window, suitable for complex project analysis - qwen: Alternative to Gemini with similar capabilities ## 3. Agent-Driven Execution Flow The command fully delegates to **universal-executor agent**, which autonomously: 1. **Analyzes Project Structure**: Executes `get_modules_by_depth.sh` to understand architecture 2. **Loads Documentation**: Reads CLAUDE.md, README.md and other key docs 3. **Extracts Keywords**: Derives core keywords from task description 4. **Discovers Files**: Uses CodexLens MCP or rg/find to locate relevant files 5. **CLI Deep Analysis**: Executes Gemini/Qwen CLI for deep context analysis 6. **Generates Content Package**: Returns structured JSON core content package ## 4. Core Content Package Structure **Output Format** - Loaded into main thread memory for subsequent use: ```json { "task_context": "在当前前端基础上开发用户认证功能", "keywords": ["前端", "用户", "认证", "auth", "login"], "project_summary": { "architecture": "TypeScript + React frontend with Vite build system", "tech_stack": ["React", "TypeScript", "Vite", "TailwindCSS"], "key_patterns": [ "State management via Context API", "Functional components with Hooks pattern", "API calls encapsulated in custom hooks" ] }, "relevant_files": [ { "path": "src/components/Auth/LoginForm.tsx", "relevance": "Existing login form component", "priority": "high" }, { "path": "src/contexts/AuthContext.tsx", "relevance": "Authentication state management context", "priority": "high" }, { "path": "CLAUDE.md", "relevance": "Project development standards", "priority": "high" } ], "integration_points": [ "Must integrate with existing AuthContext", "Follow component organization pattern: src/components/[Feature]/", "API calls should use src/hooks/useApi.ts wrapper" ], "constraints": [ "Maintain backward compatibility", "Follow TypeScript strict mode", "Use existing UI component library" ] } ``` ## 5. Agent Invocation ```javascript Task( subagent_type="universal-executor", description="Load project memory: ${task_description}", prompt=` ## Mission: Load Project Memory Context **Task**: Load project memory context for: "${task_description}" **Mode**: analysis **Tool Preference**: ${tool || 'gemini'} ## Execution Steps ### Step 1: Foundation Analysis 1. **Project Structure** \`\`\`bash bash(ccw tool exec get_modules_by_depth '{}') \`\`\` 2. **Core Documentation** \`\`\`javascript Read(CLAUDE.md) Read(README.md) \`\`\` ### Step 2: Keyword Extraction & File Discovery 1. Extract core keywords from task description 2. Discover relevant files using ripgrep and find: \`\`\`bash # Find files by name find . -name "*{keyword}*" -type f # Search content with ripgrep rg "{keyword}" --type ts --type md -C 2 rg -l "{keyword}" --type ts --type md # List files only \`\`\` ### Step 3: Deep Analysis via CLI Execute Gemini/Qwen CLI for deep analysis (saves main thread tokens): \`\`\`bash ccw cli exec " PURPOSE: Extract project core context for task: ${task_description} TASK: Analyze project architecture, tech stack, key patterns, relevant files MODE: analysis CONTEXT: @CLAUDE.md,README.md @${discovered_files} EXPECTED: Structured project summary and integration point analysis RULES: - Focus on task-relevant core information - Identify key architecture patterns and technical constraints - Extract integration points and development standards - Output concise, structured format " --tool ${tool} --mode analysis \`\`\` ### Step 4: Generate Core Content Package Generate structured JSON content package (format shown above) **Required Fields**: - task_context: Original task description - keywords: Extracted keyword array - project_summary: Architecture, tech stack, key patterns - relevant_files: File list with path, relevance, priority - integration_points: Integration guidance - constraints: Development constraints ### Step 5: Return Content Package Return JSON content package as final output for main thread to load into memory. ## Quality Checklist Before returning: - [ ] Valid JSON format - [ ] All required fields complete - [ ] relevant_files contains 3-10 files minimum - [ ] project_summary accurately reflects architecture - [ ] integration_points clearly specify integration paths - [ ] keywords accurately extracted (3-8 keywords) - [ ] Content concise, avoiding redundancy (< 5KB total) ` ) ``` ## 6. Usage Examples ### Example 1: Load Context for New Feature ```bash /memory:load "在当前前端基础上开发用户认证功能" ``` **Agent Execution**: 1. Analyzes project structure (`get_modules_by_depth.sh`) 2. Reads CLAUDE.md, README.md 3. Extracts keywords: ["前端", "用户", "认证", "auth"] 4. Uses MCP to search relevant files 5. Executes Gemini CLI for deep analysis 6. Returns core content package **Returned Package** (loaded into memory): ```json { "task_context": "在当前前端基础上开发用户认证功能", "keywords": ["前端", "认证", "auth", "login"], "project_summary": { ... }, "relevant_files": [ ... ], "integration_points": [ ... ], "constraints": [ ... ] } ``` ### Example 2: Using Qwen Tool ```bash /memory:load --tool qwen "重构支付模块API" ``` Agent uses Qwen CLI for analysis, returns same structured package. ### Example 3: Bug Fix Context ```bash /memory:load "修复登录验证错误" ``` Returns core context related to login validation, including test files and validation logic. ### Memory Persistence - **Session-Scoped**: Content package valid for current session - **Subsequent Reference**: All subsequent agents/commands can access - **Reload Required**: New sessions need to re-execute /memory:load ## 8. Notes - **Read-Only**: Does not modify any code, pure analysis - **Token Optimization**: CLI analysis executed within agent, saves main thread tokens - **Memory Loading**: Returned JSON loaded directly into main thread memory - **Subsequent Use**: Other commands/agents can reference this package for development - **Session-Level**: Content package valid for current session