"""Unit tests for ranking.py - RRF weights, intent detection, score fusion, and filtering. Tests cover: - detect_query_intent: CamelCase/underscore -> KEYWORD, natural language -> SEMANTIC, mixed - adjust_weights_by_intent: Weight adjustments per intent type - get_rrf_weights: Composite of detect + adjust - reciprocal_rank_fusion: Single/multi source, empty, weight normalization - simple_weighted_fusion: Basic fusion and empty input - apply_symbol_boost: Symbol match boost and no-match scenario - filter_results_by_category: KEYWORD -> code only, SEMANTIC -> docs priority - group_similar_results: Group results by score proximity - normalize_weights: All-zero weights edge case """ from __future__ import annotations import math from typing import Dict, List from unittest.mock import MagicMock import pytest from codexlens.entities import SearchResult from codexlens.search.ranking import ( DEFAULT_WEIGHTS, QueryIntent, adjust_weights_by_intent, apply_symbol_boost, detect_query_intent, filter_results_by_category, get_rrf_weights, group_similar_results, normalize_weights, reciprocal_rank_fusion, simple_weighted_fusion, ) # ============================================================================= # Helpers # ============================================================================= def _make_result( path: str = "a.py", score: float = 0.5, excerpt: str = "def foo():", symbol_name: str | None = None, symbol_kind: str | None = None, start_line: int | None = None, end_line: int | None = None, ) -> SearchResult: """Create a SearchResult with sensible defaults.""" return SearchResult( path=path, score=score, excerpt=excerpt, symbol_name=symbol_name, symbol_kind=symbol_kind, start_line=start_line, end_line=end_line, ) # ============================================================================= # Tests: detect_query_intent # ============================================================================= class TestDetectQueryIntent: """Tests for detect_query_intent().""" def test_detect_keyword_intent(self): """CamelCase/underscore queries should be detected as KEYWORD.""" assert detect_query_intent("MyClassName") == QueryIntent.KEYWORD assert detect_query_intent("my_function_name") == QueryIntent.KEYWORD assert detect_query_intent("foo::bar") == QueryIntent.KEYWORD def test_detect_semantic_intent(self): """Natural language queries should be detected as SEMANTIC.""" assert detect_query_intent("how to authenticate users safely?") == QueryIntent.SEMANTIC assert detect_query_intent("explain the login process") == QueryIntent.SEMANTIC def test_detect_mixed_intent(self): """Queries with both code and NL signals should be MIXED.""" # Has code signal (underscore identifier) and NL signal ("how") assert detect_query_intent("how does my_function work") == QueryIntent.MIXED def test_detect_empty_query(self): """Empty string should return MIXED (safe default).""" assert detect_query_intent("") == QueryIntent.MIXED assert detect_query_intent(" ") == QueryIntent.MIXED # ============================================================================= # Tests: adjust_weights_by_intent # ============================================================================= class TestAdjustWeightsByIntent: """Tests for adjust_weights_by_intent().""" def test_adjust_keyword_weights(self): """KEYWORD intent should boost exact and reduce vector.""" base = {"exact": 0.3, "fuzzy": 0.1, "vector": 0.6} adjusted = adjust_weights_by_intent(QueryIntent.KEYWORD, base) # Expected target: exact:0.5, fuzzy:0.1, vector:0.4 assert adjusted["exact"] == pytest.approx(0.5, abs=0.01) assert adjusted["fuzzy"] == pytest.approx(0.1, abs=0.01) assert adjusted["vector"] == pytest.approx(0.4, abs=0.01) def test_adjust_semantic_weights(self): """SEMANTIC intent should boost vector and reduce exact.""" base = {"exact": 0.3, "fuzzy": 0.1, "vector": 0.6} adjusted = adjust_weights_by_intent(QueryIntent.SEMANTIC, base) # Expected target: exact:0.2, fuzzy:0.1, vector:0.7 assert adjusted["exact"] == pytest.approx(0.2, abs=0.01) assert adjusted["fuzzy"] == pytest.approx(0.1, abs=0.01) assert adjusted["vector"] == pytest.approx(0.7, abs=0.01) def test_adjust_mixed_weights(self): """MIXED intent should return normalized base_weights.""" base = {"exact": 0.3, "fuzzy": 0.1, "vector": 0.6} adjusted = adjust_weights_by_intent(QueryIntent.MIXED, base) # MIXED returns normalized base_weights total = sum(adjusted.values()) assert total == pytest.approx(1.0, abs=0.01) # Proportions should be preserved assert adjusted["exact"] == pytest.approx(0.3, abs=0.01) # ============================================================================= # Tests: get_rrf_weights # ============================================================================= class TestGetRrfWeights: """Tests for get_rrf_weights() composite function.""" def test_get_rrf_weights_composite(self): """get_rrf_weights should compose detect_query_intent + adjust_weights_by_intent.""" base = {"exact": 0.3, "fuzzy": 0.1, "vector": 0.6} # Keyword-like query weights = get_rrf_weights("MyClassName", base) # MyClassName -> KEYWORD -> exact boosted assert weights["exact"] > weights["fuzzy"] # ============================================================================= # Tests: reciprocal_rank_fusion # ============================================================================= class TestReciprocalRankFusion: """Tests for reciprocal_rank_fusion().""" def test_rrf_single_source(self): """Single source RRF should produce ranked results.""" results = { "exact": [ _make_result(path="a.py", score=10.0), _make_result(path="b.py", score=5.0), ] } fused = reciprocal_rank_fusion(results) assert len(fused) == 2 # a.py should rank higher (rank 1) assert fused[0].path == "a.py" assert fused[0].score > fused[1].score def test_rrf_multi_source(self): """Multi-source RRF should combine rankings from multiple sources.""" results = { "exact": [ _make_result(path="a.py", score=10.0), _make_result(path="b.py", score=5.0), ], "vector": [ _make_result(path="b.py", score=0.9), _make_result(path="c.py", score=0.8), ], } weights = {"exact": 0.5, "vector": 0.5} fused = reciprocal_rank_fusion(results, weights=weights) # b.py appears in both sources - should have highest fusion score assert len(fused) == 3 assert fused[0].path == "b.py" assert fused[0].metadata["fusion_method"] == "rrf" def test_rrf_empty_results(self): """Empty results map should return empty list.""" assert reciprocal_rank_fusion({}) == [] def test_rrf_weight_normalization(self): """Weights not summing to 1.0 should be auto-normalized.""" results = { "exact": [_make_result(path="a.py", score=10.0)], } weights = {"exact": 2.0} # Does not sum to 1.0 fused = reciprocal_rank_fusion(results, weights=weights) assert len(fused) == 1 # Result should still be valid after weight normalization assert fused[0].score > 0 # ============================================================================= # Tests: simple_weighted_fusion # ============================================================================= class TestSimpleWeightedFusion: """Tests for simple_weighted_fusion().""" def test_weighted_fusion_basic(self): """Basic weighted fusion should combine scores.""" results = { "exact": [_make_result(path="a.py", score=10.0)], "vector": [_make_result(path="a.py", score=0.8)], } weights = {"exact": 0.5, "vector": 0.5} fused = simple_weighted_fusion(results, weights=weights) assert len(fused) == 1 assert fused[0].path == "a.py" assert fused[0].metadata["fusion_method"] == "simple_weighted" assert fused[0].score > 0 def test_weighted_fusion_empty(self): """Empty input should return empty list.""" assert simple_weighted_fusion({}) == [] # ============================================================================= # Tests: apply_symbol_boost # ============================================================================= class TestApplySymbolBoost: """Tests for apply_symbol_boost().""" def test_symbol_boost_applied(self): """Results with symbol_name should get boosted by factor.""" results = [ _make_result(path="a.py", score=0.5, symbol_name="authenticate"), _make_result(path="b.py", score=0.6), ] boosted = apply_symbol_boost(results, boost_factor=1.5) # a.py has symbol -> gets 1.5x boost -> 0.75 a_result = next(r for r in boosted if r.path == "a.py") assert a_result.score == pytest.approx(0.75, abs=0.01) assert a_result.metadata.get("boosted") is True def test_symbol_boost_no_match(self): """Results without symbol_name should not be boosted.""" results = [ _make_result(path="a.py", score=0.5), ] boosted = apply_symbol_boost(results, boost_factor=1.5) assert boosted[0].score == pytest.approx(0.5, abs=0.01) assert boosted[0].metadata.get("boosted") is not True # ============================================================================= # Tests: filter_results_by_category # ============================================================================= class TestFilterResultsByCategory: """Tests for filter_results_by_category().""" def test_filter_keyword_code_only(self): """KEYWORD intent should return only code files.""" results = [ _make_result(path="main.py", score=0.9), _make_result(path="README.md", score=0.8), _make_result(path="utils.ts", score=0.7), ] filtered = filter_results_by_category(results, QueryIntent.KEYWORD) paths = [r.path for r in filtered] assert "README.md" not in paths assert "main.py" in paths assert "utils.ts" in paths def test_filter_semantic_docs_first(self): """SEMANTIC intent should put docs before code.""" results = [ _make_result(path="main.py", score=0.9), _make_result(path="README.md", score=0.8), ] filtered = filter_results_by_category(results, QueryIntent.SEMANTIC, allow_mixed=True) # Docs should come first assert filtered[0].path == "README.md" # ============================================================================= # Tests: group_similar_results # ============================================================================= class TestGroupSimilarResults: """Tests for group_similar_results().""" def test_group_similar_results(self): """Results with same excerpt and close scores should be grouped.""" results = [ _make_result(path="a.py", score=0.50, excerpt="def foo():"), _make_result(path="b.py", score=0.50, excerpt="def foo():"), _make_result(path="c.py", score=0.30, excerpt="def bar():"), ] grouped = group_similar_results(results, score_threshold_abs=0.01) # a.py and b.py should be grouped (same excerpt, same score) assert len(grouped) == 2 # Find the grouped result grouped_result = next(r for r in grouped if r.path == "a.py") assert len(grouped_result.additional_locations) == 1 assert grouped_result.additional_locations[0].path == "b.py" # ============================================================================= # Tests: normalize_weights # ============================================================================= class TestNormalizeWeights: """Tests for normalize_weights().""" def test_normalize_weights_zero_total(self): """All-zero weights should be returned as-is (no division by zero).""" weights = {"exact": 0.0, "fuzzy": 0.0, "vector": 0.0} result = normalize_weights(weights) assert result == {"exact": 0.0, "fuzzy": 0.0, "vector": 0.0}