"""Factory for creating embedders. Provides a unified interface for instantiating different embedder backends. """ from __future__ import annotations from typing import Any, Dict, List, Optional from .base import BaseEmbedder def get_embedder( backend: str = "fastembed", profile: str = "code", model: str = "default", use_gpu: bool = True, endpoints: Optional[List[Dict[str, Any]]] = None, strategy: str = "latency_aware", cooldown: float = 60.0, **kwargs: Any, ) -> BaseEmbedder: """Factory function to create embedder based on backend. Args: backend: Embedder backend to use. Options: - "fastembed": Use fastembed (ONNX-based) embedder (default) - "litellm": Use ccw-litellm embedder profile: Model profile for fastembed backend ("fast", "code", "multilingual", "balanced") Used only when backend="fastembed". Default: "code" model: Model identifier for litellm backend. Used only when backend="litellm". Default: "default" use_gpu: Whether to use GPU acceleration when available (default: True). Used only when backend="fastembed". endpoints: Optional list of endpoint configurations for multi-endpoint load balancing. Each endpoint is a dict with keys: model, api_key, api_base, weight. Used only when backend="litellm" and multiple endpoints provided. strategy: Selection strategy for multi-endpoint mode: "round_robin", "latency_aware", "weighted_random". Default: "latency_aware" cooldown: Default cooldown seconds for rate-limited endpoints (default: 60.0) **kwargs: Additional backend-specific arguments Returns: BaseEmbedder: Configured embedder instance Raises: ValueError: If backend is not recognized ImportError: If required backend dependencies are not installed Examples: Create fastembed embedder with code profile: >>> embedder = get_embedder(backend="fastembed", profile="code") Create fastembed embedder with fast profile and CPU only: >>> embedder = get_embedder(backend="fastembed", profile="fast", use_gpu=False) Create litellm embedder: >>> embedder = get_embedder(backend="litellm", model="text-embedding-3-small") Create rotational embedder with multiple endpoints: >>> endpoints = [ ... {"model": "openai/text-embedding-3-small", "api_key": "sk-..."}, ... {"model": "azure/my-embedding", "api_base": "https://...", "api_key": "..."}, ... ] >>> embedder = get_embedder(backend="litellm", endpoints=endpoints) """ if backend == "fastembed": from .embedder import Embedder return Embedder(profile=profile, use_gpu=use_gpu, **kwargs) elif backend == "litellm": # Check if multi-endpoint mode is requested if endpoints and len(endpoints) > 1: from .rotational_embedder import create_rotational_embedder return create_rotational_embedder( endpoints_config=endpoints, strategy=strategy, default_cooldown=cooldown, ) elif endpoints and len(endpoints) == 1: # Single endpoint in list - use it directly ep = endpoints[0] ep_kwargs = {**kwargs} if "api_key" in ep: ep_kwargs["api_key"] = ep["api_key"] if "api_base" in ep: ep_kwargs["api_base"] = ep["api_base"] from .litellm_embedder import LiteLLMEmbedderWrapper return LiteLLMEmbedderWrapper(model=ep["model"], **ep_kwargs) else: # No endpoints list - use model parameter from .litellm_embedder import LiteLLMEmbedderWrapper return LiteLLMEmbedderWrapper(model=model, **kwargs) else: raise ValueError( f"Unknown backend: {backend}. " f"Supported backends: 'fastembed', 'litellm'" )