[build-system] requires = ["setuptools>=61.0"] build-backend = "setuptools.build_meta" [project] name = "codex-lens" version = "0.1.0" description = "CodexLens multi-modal code analysis platform" readme = "README.md" requires-python = ">=3.10" license = { text = "MIT" } authors = [ { name = "CodexLens contributors" } ] dependencies = [ "typer>=0.9", "rich>=13", "pydantic>=2.0", "tree-sitter>=0.20", "tree-sitter-python>=0.25", "tree-sitter-javascript>=0.25", "tree-sitter-typescript>=0.23", "pathspec>=0.11", ] [project.optional-dependencies] # Semantic search using fastembed (ONNX-based, lightweight ~200MB) semantic = [ "numpy>=1.24", "fastembed>=0.2", "hnswlib>=0.8.0", ] # GPU acceleration for semantic search (NVIDIA CUDA) # Install with: pip install codexlens[semantic-gpu] semantic-gpu = [ "numpy>=1.24", "fastembed>=0.2", "hnswlib>=0.8.0", "onnxruntime-gpu>=1.15.0", # CUDA support ] # GPU acceleration for Windows (DirectML - supports NVIDIA/AMD/Intel) # Install with: pip install codexlens[semantic-directml] semantic-directml = [ "numpy>=1.24", "fastembed>=0.2", "hnswlib>=0.8.0", "onnxruntime-directml>=1.15.0", # DirectML support ] # Encoding detection for non-UTF8 files encoding = [ "chardet>=5.0", ] # Full features including tiktoken for accurate token counting full = [ "tiktoken>=0.5.0", ] [project.urls] Homepage = "https://github.com/openai/codex-lens" [tool.setuptools] package-dir = { "" = "src" }