mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-05 01:50:27 +08:00
- Implemented issue discovery prompt to analyze code from various perspectives (bug, UX, test, quality, security, performance, maintainability, best-practices). - Created structured issue generation prompt from GitHub URLs or text descriptions, including clarity detection and optional clarification questions. - Introduced CCW Loop-B hybrid orchestrator pattern for iterative development, featuring a coordinator and specialized workers with batch wait support. - Defined state management, session structure, and output schemas for the CCW Loop-B workflow. - Added error handling and best practices documentation for the new features.
11 KiB
11 KiB
description, argument-hint
| description | argument-hint |
|---|---|
| Discover issues from user prompt with iterative multi-agent exploration and cross-module comparison | <prompt> [--scope=src/**] [--depth=standard|deep] [--max-iterations=5] |
Issue Discovery by Prompt (Codex Version)
Goal
Prompt-driven issue discovery with intelligent planning. Instead of fixed perspectives, this command:
- Analyzes user intent to understand what to find
- Plans exploration strategy dynamically based on codebase structure
- Executes iterative exploration with feedback loops
- Performs cross-module comparison when detecting comparison intent
Core Difference from issue-discover.md:
issue-discover: Pre-defined perspectives (bug, security, etc.), parallel executionissue-discover-by-prompt: User-driven prompt, planned strategy, iterative exploration
Inputs
- Prompt: Natural language description of what to find
- Scope:
--scope=src/**- File pattern to explore (default:**/*) - Depth:
--depth=standard|deep- standard (3 iterations) or deep (5+ iterations) - Max Iterations:
--max-iterations=N(default: 5)
Output Requirements
Generate Files:
.workflow/issues/discoveries/{discovery-id}/discovery-state.json- Session state with iteration tracking.workflow/issues/discoveries/{discovery-id}/iterations/{N}/{dimension}.json- Per-iteration findings.workflow/issues/discoveries/{discovery-id}/comparison-analysis.json- Cross-dimension comparison (if applicable).workflow/issues/discoveries/{discovery-id}/discovery-issues.jsonl- Generated issue candidates
Return Summary:
{
"discovery_id": "DBP-YYYYMMDD-HHmmss",
"prompt": "Check if frontend API calls match backend implementations",
"intent_type": "comparison",
"dimensions": ["frontend-calls", "backend-handlers"],
"total_iterations": 3,
"total_findings": 24,
"issues_generated": 12,
"comparison_match_rate": 0.75
}
Workflow
Step 1: Initialize Discovery Session
# Generate discovery ID
DISCOVERY_ID="DBP-$(date -u +%Y%m%d-%H%M%S)"
OUTPUT_DIR=".workflow/issues/discoveries/${DISCOVERY_ID}"
# Create directory structure
mkdir -p "${OUTPUT_DIR}/iterations"
Detect intent type from prompt:
comparison: Contains "match", "compare", "versus", "vs", "between"search: Contains "find", "locate", "where"verification: Contains "verify", "check", "ensure"audit: Contains "audit", "review", "analyze"
Step 2: Gather Context
Use rg and file exploration to understand codebase structure:
# Find relevant modules based on prompt keywords
rg -l "<keyword1>" --type ts | head -10
rg -l "<keyword2>" --type ts | head -10
# Understand project structure
ls -la src/
cat .workflow/project-tech.json 2>/dev/null || echo "No project-tech.json"
Build context package:
{
"prompt_keywords": ["frontend", "API", "backend"],
"codebase_structure": { "modules": [...], "patterns": [...] },
"relevant_modules": ["src/api/", "src/services/"]
}
Step 3: Plan Exploration Strategy
Analyze the prompt and context to design exploration strategy.
Output exploration plan:
{
"intent_analysis": {
"type": "comparison",
"primary_question": "Do frontend API calls match backend implementations?",
"sub_questions": ["Are endpoints aligned?", "Are payloads compatible?"]
},
"dimensions": [
{
"name": "frontend-calls",
"description": "Client-side API calls and error handling",
"search_targets": ["src/api/**", "src/hooks/**"],
"focus_areas": ["fetch calls", "error boundaries", "response parsing"]
},
{
"name": "backend-handlers",
"description": "Server-side API implementations",
"search_targets": ["src/server/**", "src/routes/**"],
"focus_areas": ["endpoint handlers", "response schemas", "error responses"]
}
],
"comparison_matrix": {
"dimension_a": "frontend-calls",
"dimension_b": "backend-handlers",
"comparison_points": [
{"aspect": "endpoints", "frontend_check": "fetch URLs", "backend_check": "route paths"},
{"aspect": "methods", "frontend_check": "HTTP methods used", "backend_check": "methods accepted"},
{"aspect": "payloads", "frontend_check": "request body structure", "backend_check": "expected schema"},
{"aspect": "responses", "frontend_check": "response parsing", "backend_check": "response format"}
]
},
"estimated_iterations": 3,
"termination_conditions": ["All comparison points verified", "No new findings in last iteration"]
}
Step 4: Iterative Exploration
Execute iterations until termination conditions are met:
WHILE iteration < max_iterations AND shouldContinue:
1. Plan iteration focus based on previous findings
2. Explore each dimension
3. Collect and analyze findings
4. Cross-reference between dimensions
5. Check convergence
For each iteration:
- Search for relevant code using
rg:
# Based on dimension focus areas
rg "fetch\s*\(" --type ts -C 3 | head -50
rg "app\.(get|post|put|delete)" --type ts -C 3 | head -50
- Analyze and record findings:
{
"dimension": "frontend-calls",
"iteration": 1,
"findings": [
{
"id": "F-001",
"title": "Undefined endpoint in UserService",
"category": "endpoint-mismatch",
"file": "src/api/userService.ts",
"line": 42,
"snippet": "fetch('/api/users/profile')",
"related_dimension": "backend-handlers",
"confidence": 0.85
}
],
"coverage": {
"files_explored": 15,
"areas_covered": ["fetch calls", "axios instances"],
"areas_remaining": ["graphql queries"]
},
"leads": [
{"description": "Check GraphQL mutations", "suggested_search": "mutation.*User"}
]
}
- Cross-reference findings between dimensions:
// For each finding in dimension A, look for related code in dimension B
if (finding.related_dimension) {
searchForRelatedCode(finding, otherDimension);
}
- Check convergence:
const convergence = {
newDiscoveries: newFindings.length,
confidence: calculateConfidence(cumulativeFindings),
converged: newFindings.length === 0 || confidence > 0.9
};
Step 5: Cross-Analysis (for comparison intent)
If intent is comparison, analyze findings across dimensions:
for (const point of comparisonMatrix.comparison_points) {
const aFindings = findings.filter(f =>
f.related_dimension === dimension_a && f.category.includes(point.aspect)
);
const bFindings = findings.filter(f =>
f.related_dimension === dimension_b && f.category.includes(point.aspect)
);
// Find discrepancies
const discrepancies = compareFindings(aFindings, bFindings, point);
// Calculate match rate
const matchRate = calculateMatchRate(aFindings, bFindings);
}
Write to comparison-analysis.json:
{
"matrix": { "dimension_a": "...", "dimension_b": "...", "comparison_points": [...] },
"results": [
{
"aspect": "endpoints",
"dimension_a_count": 15,
"dimension_b_count": 12,
"discrepancies": [
{"frontend": "/api/users/profile", "backend": "NOT_FOUND", "type": "missing_endpoint"}
],
"match_rate": 0.80
}
],
"summary": {
"total_discrepancies": 5,
"overall_match_rate": 0.75,
"critical_mismatches": ["endpoints", "payloads"]
}
}
Step 6: Generate Issues
Convert high-confidence findings to issues:
# For each finding with confidence >= 0.7 or priority critical/high
echo '{"id":"ISS-DBP-001","title":"Missing backend endpoint for /api/users/profile",...}' >> ${OUTPUT_DIR}/discovery-issues.jsonl
Step 7: Update Final State
{
"discovery_id": "DBP-...",
"type": "prompt-driven",
"prompt": "...",
"intent_type": "comparison",
"phase": "complete",
"created_at": "...",
"updated_at": "...",
"iterations": [
{"number": 1, "findings_count": 10, "new_discoveries": 10, "confidence": 0.6},
{"number": 2, "findings_count": 18, "new_discoveries": 8, "confidence": 0.75},
{"number": 3, "findings_count": 24, "new_discoveries": 6, "confidence": 0.85}
],
"results": {
"total_iterations": 3,
"total_findings": 24,
"issues_generated": 12,
"comparison_match_rate": 0.75
}
}
Step 8: Output Summary
## Discovery Complete: DBP-...
**Prompt**: Check if frontend API calls match backend implementations
**Intent**: comparison
**Dimensions**: frontend-calls, backend-handlers
### Iteration Summary
| # | Findings | New | Confidence |
|---|----------|-----|------------|
| 1 | 10 | 10 | 60% |
| 2 | 18 | 8 | 75% |
| 3 | 24 | 6 | 85% |
### Comparison Results
- **Overall Match Rate**: 75%
- **Total Discrepancies**: 5
- **Critical Mismatches**: endpoints, payloads
### Issues Generated: 12
- 2 Critical
- 4 High
- 6 Medium
### Next Steps
- `/issue:plan DBP-001,DBP-002,...` to plan solutions
- `ccw view` to review findings in dashboard
Quality Checklist
Before completing, verify:
- Intent type correctly detected from prompt
- Dimensions dynamically generated based on prompt
- Iterations executed until convergence or max limit
- Cross-reference analysis performed (for comparison intent)
- High-confidence findings converted to issues
- Discovery state shows
phase: complete
Error Handling
| Situation | Action |
|---|---|
| No relevant code found | Report empty result, suggest broader scope |
| Max iterations without convergence | Complete with current findings, note in summary |
| Comparison dimension mismatch | Report which dimension has fewer findings |
| No comparison points matched | Report as "No direct matches found" |
Use Cases
| Scenario | Example Prompt |
|---|---|
| API Contract | "Check if frontend calls match backend endpoints" |
| Error Handling | "Find inconsistent error handling patterns" |
| Migration Gap | "Compare old auth with new auth implementation" |
| Feature Parity | "Verify mobile has all web features" |
| Schema Drift | "Check if TypeScript types match API responses" |
| Integration | "Find mismatches between service A and service B" |
Start Discovery
Parse prompt and detect intent:
PROMPT="${1}"
SCOPE="${2:-**/*}"
DEPTH="${3:-standard}"
# Detect intent keywords
if echo "${PROMPT}" | grep -qiE '(match|compare|versus|vs|between)'; then
INTENT="comparison"
elif echo "${PROMPT}" | grep -qiE '(find|locate|where)'; then
INTENT="search"
elif echo "${PROMPT}" | grep -qiE '(verify|check|ensure)'; then
INTENT="verification"
else
INTENT="audit"
fi
echo "Intent detected: ${INTENT}"
echo "Starting discovery with scope: ${SCOPE}"
Then follow the workflow to explore and discover issues.