mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-05 01:50:27 +08:00
- Implemented unit tests for the Tokenizer class, covering various text inputs, edge cases, and fallback mechanisms. - Created performance benchmarks comparing tiktoken and pure Python implementations for token counting. - Developed extensive tests for TreeSitterSymbolParser across Python, JavaScript, and TypeScript, ensuring accurate symbol extraction and parsing. - Added configuration documentation for MCP integration and custom prompts, enhancing usability and flexibility. - Introduced a refactor script for GraphAnalyzer to streamline future improvements.
399 lines
14 KiB
Python
399 lines
14 KiB
Python
"""Code chunking strategies for semantic search."""
|
|
|
|
from __future__ import annotations
|
|
|
|
from dataclasses import dataclass
|
|
from pathlib import Path
|
|
from typing import List, Optional, Tuple
|
|
|
|
from codexlens.entities import SemanticChunk, Symbol
|
|
from codexlens.parsers.tokenizer import get_default_tokenizer
|
|
|
|
|
|
@dataclass
|
|
class ChunkConfig:
|
|
"""Configuration for chunking strategies."""
|
|
max_chunk_size: int = 1000 # Max characters per chunk
|
|
overlap: int = 100 # Overlap for sliding window
|
|
strategy: str = "auto" # Chunking strategy: auto, symbol, sliding_window, hybrid
|
|
min_chunk_size: int = 50 # Minimum chunk size
|
|
|
|
|
|
class Chunker:
|
|
"""Chunk code files for semantic embedding."""
|
|
|
|
def __init__(self, config: ChunkConfig | None = None) -> None:
|
|
self.config = config or ChunkConfig()
|
|
self._tokenizer = get_default_tokenizer()
|
|
|
|
def chunk_by_symbol(
|
|
self,
|
|
content: str,
|
|
symbols: List[Symbol],
|
|
file_path: str | Path,
|
|
language: str,
|
|
symbol_token_counts: Optional[dict[str, int]] = None,
|
|
) -> List[SemanticChunk]:
|
|
"""Chunk code by extracted symbols (functions, classes).
|
|
|
|
Each symbol becomes one chunk with its full content.
|
|
|
|
Args:
|
|
content: Source code content
|
|
symbols: List of extracted symbols
|
|
file_path: Path to source file
|
|
language: Programming language
|
|
symbol_token_counts: Optional dict mapping symbol names to token counts
|
|
"""
|
|
chunks: List[SemanticChunk] = []
|
|
lines = content.splitlines(keepends=True)
|
|
|
|
for symbol in symbols:
|
|
start_line, end_line = symbol.range
|
|
# Convert to 0-indexed
|
|
start_idx = max(0, start_line - 1)
|
|
end_idx = min(len(lines), end_line)
|
|
|
|
chunk_content = "".join(lines[start_idx:end_idx])
|
|
if len(chunk_content.strip()) < self.config.min_chunk_size:
|
|
continue
|
|
|
|
# Calculate token count if not provided
|
|
token_count = None
|
|
if symbol_token_counts and symbol.name in symbol_token_counts:
|
|
token_count = symbol_token_counts[symbol.name]
|
|
else:
|
|
token_count = self._tokenizer.count_tokens(chunk_content)
|
|
|
|
chunks.append(SemanticChunk(
|
|
content=chunk_content,
|
|
embedding=None,
|
|
metadata={
|
|
"file": str(file_path),
|
|
"language": language,
|
|
"symbol_name": symbol.name,
|
|
"symbol_kind": symbol.kind,
|
|
"start_line": start_line,
|
|
"end_line": end_line,
|
|
"strategy": "symbol",
|
|
"token_count": token_count,
|
|
}
|
|
))
|
|
|
|
return chunks
|
|
|
|
def chunk_sliding_window(
|
|
self,
|
|
content: str,
|
|
file_path: str | Path,
|
|
language: str,
|
|
line_mapping: Optional[List[int]] = None,
|
|
) -> List[SemanticChunk]:
|
|
"""Chunk code using sliding window approach.
|
|
|
|
Used for files without clear symbol boundaries or very long functions.
|
|
|
|
Args:
|
|
content: Source code content
|
|
file_path: Path to source file
|
|
language: Programming language
|
|
line_mapping: Optional list mapping content line indices to original line numbers
|
|
(1-indexed). If provided, line_mapping[i] is the original line number
|
|
for the i-th line in content.
|
|
"""
|
|
chunks: List[SemanticChunk] = []
|
|
lines = content.splitlines(keepends=True)
|
|
|
|
if not lines:
|
|
return chunks
|
|
|
|
# Calculate lines per chunk based on average line length
|
|
avg_line_len = len(content) / max(len(lines), 1)
|
|
lines_per_chunk = max(10, int(self.config.max_chunk_size / max(avg_line_len, 1)))
|
|
overlap_lines = max(2, int(self.config.overlap / max(avg_line_len, 1)))
|
|
|
|
start = 0
|
|
chunk_idx = 0
|
|
|
|
while start < len(lines):
|
|
end = min(start + lines_per_chunk, len(lines))
|
|
chunk_content = "".join(lines[start:end])
|
|
|
|
if len(chunk_content.strip()) >= self.config.min_chunk_size:
|
|
token_count = self._tokenizer.count_tokens(chunk_content)
|
|
|
|
# Calculate correct line numbers
|
|
if line_mapping:
|
|
# Use line mapping to get original line numbers
|
|
start_line = line_mapping[start]
|
|
end_line = line_mapping[end - 1]
|
|
else:
|
|
# Default behavior: treat content as starting at line 1
|
|
start_line = start + 1
|
|
end_line = end
|
|
|
|
chunks.append(SemanticChunk(
|
|
content=chunk_content,
|
|
embedding=None,
|
|
metadata={
|
|
"file": str(file_path),
|
|
"language": language,
|
|
"chunk_index": chunk_idx,
|
|
"start_line": start_line,
|
|
"end_line": end_line,
|
|
"strategy": "sliding_window",
|
|
"token_count": token_count,
|
|
}
|
|
))
|
|
chunk_idx += 1
|
|
|
|
# Move window, accounting for overlap
|
|
start = end - overlap_lines
|
|
if start >= len(lines) - overlap_lines:
|
|
break
|
|
|
|
return chunks
|
|
|
|
def chunk_file(
|
|
self,
|
|
content: str,
|
|
symbols: List[Symbol],
|
|
file_path: str | Path,
|
|
language: str,
|
|
symbol_token_counts: Optional[dict[str, int]] = None,
|
|
) -> List[SemanticChunk]:
|
|
"""Chunk a file using the best strategy.
|
|
|
|
Uses symbol-based chunking if symbols available,
|
|
falls back to sliding window for files without symbols.
|
|
|
|
Args:
|
|
content: Source code content
|
|
symbols: List of extracted symbols
|
|
file_path: Path to source file
|
|
language: Programming language
|
|
symbol_token_counts: Optional dict mapping symbol names to token counts
|
|
"""
|
|
if symbols:
|
|
return self.chunk_by_symbol(content, symbols, file_path, language, symbol_token_counts)
|
|
return self.chunk_sliding_window(content, file_path, language)
|
|
|
|
class DocstringExtractor:
|
|
"""Extract docstrings from source code."""
|
|
|
|
@staticmethod
|
|
def extract_python_docstrings(content: str) -> List[Tuple[str, int, int]]:
|
|
"""Extract Python docstrings with their line ranges.
|
|
|
|
Returns: List of (docstring_content, start_line, end_line) tuples
|
|
"""
|
|
docstrings: List[Tuple[str, int, int]] = []
|
|
lines = content.splitlines(keepends=True)
|
|
|
|
i = 0
|
|
while i < len(lines):
|
|
line = lines[i]
|
|
stripped = line.strip()
|
|
if stripped.startswith('"""') or stripped.startswith("'''"):
|
|
quote_type = '"""' if stripped.startswith('"""') else "'''"
|
|
start_line = i + 1
|
|
|
|
if stripped.count(quote_type) >= 2:
|
|
docstring_content = line
|
|
end_line = i + 1
|
|
docstrings.append((docstring_content, start_line, end_line))
|
|
i += 1
|
|
continue
|
|
|
|
docstring_lines = [line]
|
|
i += 1
|
|
while i < len(lines):
|
|
docstring_lines.append(lines[i])
|
|
if quote_type in lines[i]:
|
|
break
|
|
i += 1
|
|
|
|
end_line = i + 1
|
|
docstring_content = "".join(docstring_lines)
|
|
docstrings.append((docstring_content, start_line, end_line))
|
|
|
|
i += 1
|
|
|
|
return docstrings
|
|
|
|
@staticmethod
|
|
def extract_jsdoc_comments(content: str) -> List[Tuple[str, int, int]]:
|
|
"""Extract JSDoc comments with their line ranges.
|
|
|
|
Returns: List of (comment_content, start_line, end_line) tuples
|
|
"""
|
|
comments: List[Tuple[str, int, int]] = []
|
|
lines = content.splitlines(keepends=True)
|
|
|
|
i = 0
|
|
while i < len(lines):
|
|
line = lines[i]
|
|
stripped = line.strip()
|
|
|
|
if stripped.startswith('/**'):
|
|
start_line = i + 1
|
|
comment_lines = [line]
|
|
i += 1
|
|
|
|
while i < len(lines):
|
|
comment_lines.append(lines[i])
|
|
if '*/' in lines[i]:
|
|
break
|
|
i += 1
|
|
|
|
end_line = i + 1
|
|
comment_content = "".join(comment_lines)
|
|
comments.append((comment_content, start_line, end_line))
|
|
|
|
i += 1
|
|
|
|
return comments
|
|
|
|
@classmethod
|
|
def extract_docstrings(
|
|
cls,
|
|
content: str,
|
|
language: str
|
|
) -> List[Tuple[str, int, int]]:
|
|
"""Extract docstrings based on language.
|
|
|
|
Returns: List of (docstring_content, start_line, end_line) tuples
|
|
"""
|
|
if language == "python":
|
|
return cls.extract_python_docstrings(content)
|
|
elif language in {"javascript", "typescript"}:
|
|
return cls.extract_jsdoc_comments(content)
|
|
return []
|
|
|
|
|
|
class HybridChunker:
|
|
"""Hybrid chunker that prioritizes docstrings before symbol-based chunking.
|
|
|
|
Composition-based strategy that:
|
|
1. Extracts docstrings as dedicated chunks
|
|
2. For remaining code, uses base chunker (symbol or sliding window)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
base_chunker: Chunker | None = None,
|
|
config: ChunkConfig | None = None
|
|
) -> None:
|
|
"""Initialize hybrid chunker.
|
|
|
|
Args:
|
|
base_chunker: Chunker to use for non-docstring content
|
|
config: Configuration for chunking
|
|
"""
|
|
self.config = config or ChunkConfig()
|
|
self.base_chunker = base_chunker or Chunker(self.config)
|
|
self.docstring_extractor = DocstringExtractor()
|
|
|
|
def _get_excluded_line_ranges(
|
|
self,
|
|
docstrings: List[Tuple[str, int, int]]
|
|
) -> set[int]:
|
|
"""Get set of line numbers that are part of docstrings."""
|
|
excluded_lines: set[int] = set()
|
|
for _, start_line, end_line in docstrings:
|
|
for line_num in range(start_line, end_line + 1):
|
|
excluded_lines.add(line_num)
|
|
return excluded_lines
|
|
|
|
def _filter_symbols_outside_docstrings(
|
|
self,
|
|
symbols: List[Symbol],
|
|
excluded_lines: set[int]
|
|
) -> List[Symbol]:
|
|
"""Filter symbols to exclude those completely within docstrings."""
|
|
filtered: List[Symbol] = []
|
|
for symbol in symbols:
|
|
start_line, end_line = symbol.range
|
|
symbol_lines = set(range(start_line, end_line + 1))
|
|
if not symbol_lines.issubset(excluded_lines):
|
|
filtered.append(symbol)
|
|
return filtered
|
|
|
|
def chunk_file(
|
|
self,
|
|
content: str,
|
|
symbols: List[Symbol],
|
|
file_path: str | Path,
|
|
language: str,
|
|
symbol_token_counts: Optional[dict[str, int]] = None,
|
|
) -> List[SemanticChunk]:
|
|
"""Chunk file using hybrid strategy.
|
|
|
|
Extracts docstrings first, then chunks remaining code.
|
|
|
|
Args:
|
|
content: Source code content
|
|
symbols: List of extracted symbols
|
|
file_path: Path to source file
|
|
language: Programming language
|
|
symbol_token_counts: Optional dict mapping symbol names to token counts
|
|
"""
|
|
chunks: List[SemanticChunk] = []
|
|
tokenizer = get_default_tokenizer()
|
|
|
|
# Step 1: Extract docstrings as dedicated chunks
|
|
docstrings = self.docstring_extractor.extract_docstrings(content, language)
|
|
|
|
for docstring_content, start_line, end_line in docstrings:
|
|
if len(docstring_content.strip()) >= self.config.min_chunk_size:
|
|
token_count = tokenizer.count_tokens(docstring_content)
|
|
chunks.append(SemanticChunk(
|
|
content=docstring_content,
|
|
embedding=None,
|
|
metadata={
|
|
"file": str(file_path),
|
|
"language": language,
|
|
"chunk_type": "docstring",
|
|
"start_line": start_line,
|
|
"end_line": end_line,
|
|
"strategy": "hybrid",
|
|
"token_count": token_count,
|
|
}
|
|
))
|
|
|
|
# Step 2: Get line ranges occupied by docstrings
|
|
excluded_lines = self._get_excluded_line_ranges(docstrings)
|
|
|
|
# Step 3: Filter symbols to exclude docstring-only ranges
|
|
filtered_symbols = self._filter_symbols_outside_docstrings(symbols, excluded_lines)
|
|
|
|
# Step 4: Chunk remaining content using base chunker
|
|
if filtered_symbols:
|
|
base_chunks = self.base_chunker.chunk_by_symbol(
|
|
content, filtered_symbols, file_path, language, symbol_token_counts
|
|
)
|
|
for chunk in base_chunks:
|
|
chunk.metadata["strategy"] = "hybrid"
|
|
chunk.metadata["chunk_type"] = "code"
|
|
chunks.append(chunk)
|
|
else:
|
|
lines = content.splitlines(keepends=True)
|
|
remaining_lines: List[str] = []
|
|
|
|
for i, line in enumerate(lines, start=1):
|
|
if i not in excluded_lines:
|
|
remaining_lines.append(line)
|
|
|
|
if remaining_lines:
|
|
remaining_content = "".join(remaining_lines)
|
|
if len(remaining_content.strip()) >= self.config.min_chunk_size:
|
|
base_chunks = self.base_chunker.chunk_sliding_window(
|
|
remaining_content, file_path, language
|
|
)
|
|
for chunk in base_chunks:
|
|
chunk.metadata["strategy"] = "hybrid"
|
|
chunk.metadata["chunk_type"] = "code"
|
|
chunks.append(chunk)
|
|
|
|
return chunks
|