mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-10 02:24:35 +08:00
- Created execution agent prompt for issue execution with detailed deliverables and validation criteria. - Developed planning agent prompt to analyze issues and generate structured solution plans. - Introduced issue handling specifications outlining the workflow and issue structure. - Established quality standards for evaluating completeness, consistency, correctness, and clarity of solutions. - Defined solution schema specification detailing the required structure and validation rules for solutions. - Documented subagent roles and responsibilities, emphasizing the dual-agent strategy for improved workflow efficiency.
7.2 KiB
7.2 KiB
Orchestrator - Dual-Agent Pipeline Architecture
主流程编排器:创建两个持久化 agent(规划和执行),流水线式处理所有 issue。
Architecture Overview
┌─────────────────────────────────────────────────────────┐
│ Main Orchestrator (Claude Code) │
│ 流水线式分配任务给两个持久化 agent │
└──────┬────────────────────────────────────────┬────────┘
│ send_input │ send_input
│ (逐个 issue) │ (逐个 solution)
▼ ▼
┌──────────────────┐ ┌──────────────────┐
│ Planning Agent │ │ Execution Agent │
│ (持久化) │ │ (持久化) │
│ │ │ │
│ • 接收 issue │ │ • 接收 solution │
│ • 设计方案 │ │ • 执行 tasks │
│ • 返回 solution │ │ • 返回执行结果 │
└──────────────────┘ └──────────────────┘
▲ ▲
└────────────────┬─────────────────────┘
wait for completion
Main Orchestrator Pseudocode
async function mainOrchestrator(workDir, issues) {
const planningResults = { results: [] }; // 统一存储
const executionResults = { results: [] }; // 统一存储
// 1. Create persistent agents (never close until done)
const planningAgentId = spawn_agent({
message: Read('prompts/planning-agent-system.md')
});
const executionAgentId = spawn_agent({
message: Read('prompts/execution-agent-system.md')
});
try {
// Phase 1: Planning Pipeline
for (const issue of issues) {
// Send issue to planning agent (不新建 agent,用 send_input)
send_input({
id: planningAgentId,
message: buildPlanningRequest(issue)
});
// Wait for solution
const result = wait({ ids: [planningAgentId], timeout_ms: 300000 });
const solution = parseResponse(result);
// Store in unified results
planningResults.results.push({
issue_id: issue.id,
solution: solution,
status: solution ? "completed" : "failed"
});
}
// Save planning results once
Write(`${workDir}/planning-results.json`, JSON.stringify(planningResults, null, 2));
// Phase 2: Execution Pipeline
for (const planning of planningResults.results) {
if (planning.status !== "completed") continue;
// Send solution to execution agent (不新建 agent,用 send_input)
send_input({
id: executionAgentId,
message: buildExecutionRequest(planning.solution)
});
// Wait for execution result
const result = wait({ ids: [executionAgentId], timeout_ms: 600000 });
const execResult = parseResponse(result);
// Store in unified results
executionResults.results.push({
issue_id: planning.issue_id,
status: execResult?.status || "failed",
commit_hash: execResult?.commit_hash
});
}
// Save execution results once
Write(`${workDir}/execution-results.json`, JSON.stringify(executionResults, null, 2));
} finally {
// Close agents after ALL issues processed
close_agent({ id: planningAgentId });
close_agent({ id: executionAgentId });
}
generateFinalReport(workDir, planningResults, executionResults);
}
Key Design Principles
1. Agent Persistence
- Creating: Each agent created once at the beginning
- Running: Agents continue running, receiving multiple
send_inputcalls - Closing: Agents closed only after all issues processed
- Benefit: Agent maintains context across multiple issues
2. Unified Results Storage
// planning-results.json
{
"phase": "planning",
"created_at": "2025-01-29T12:00:00Z",
"results": [
{
"issue_id": "ISS-001",
"solution_id": "SOL-ISS-001-1",
"status": "completed",
"solution": { "id": "...", "tasks": [...] },
"planned_at": "2025-01-29T12:05:00Z"
},
{
"issue_id": "ISS-002",
"solution_id": "SOL-ISS-002-1",
"status": "completed",
"solution": { "id": "...", "tasks": [...] },
"planned_at": "2025-01-29T12:10:00Z"
}
]
}
// execution-results.json
{
"phase": "execution",
"created_at": "2025-01-29T12:15:00Z",
"results": [
{
"issue_id": "ISS-001",
"solution_id": "SOL-ISS-001-1",
"status": "completed",
"commit_hash": "abc123def",
"files_modified": ["src/auth.ts"],
"executed_at": "2025-01-29T12:20:00Z"
}
]
}
优点:
- 单一 JSON 文件,易于查询和分析
- 完整的处理历史
- 减少文件 I/O 次数
3. Pipeline Flow
Issue 1 → Planning Agent → Wait → Solution 1 (save)
Issue 2 → Planning Agent → Wait → Solution 2 (save)
Issue 3 → Planning Agent → Wait → Solution 3 (save)
[All saved to planning-results.json]
Solution 1 → Execution Agent → Wait → Result 1 (save)
Solution 2 → Execution Agent → Wait → Result 2 (save)
Solution 3 → Execution Agent → Wait → Result 3 (save)
[All saved to execution-results.json]
4. Agent Communication via send_input
Instead of creating new agents, reuse persistent ones:
// ❌ OLD: Create new agent per issue
for (const issue of issues) {
const agentId = spawn_agent({ message: prompt });
const result = wait({ ids: [agentId] });
close_agent({ id: agentId }); // ← Expensive!
}
// ✅ NEW: Persistent agent with send_input
const agentId = spawn_agent({ message: initialPrompt });
for (const issue of issues) {
send_input({ id: agentId, message: taskPrompt }); // ← Reuse!
const result = wait({ ids: [agentId] });
}
close_agent({ id: agentId }); // ← Single cleanup
5. Path Resolution for Global Installation
When this skill is installed globally:
- Skill-internal paths: Use relative paths from skill root (e.g.,
prompts/planning-agent-system.md) - Project paths: Use project-relative paths starting with
.(e.g.,.workflow/project-tech.json) - User-home paths: Use
~prefix (e.g.,~/.codex/agents/...) - Working directory: Always relative to the project root when skill executes
Benefits of This Architecture
| 方面 | 优势 |
|---|---|
| 性能 | Agent 创建/销毁开销仅一次(而非 N 次) |
| 上下文 | Agent 在多个任务间保持上下文 |
| 存储 | 统一的 JSON 文件,易于追踪和查询 |
| 通信 | 通过 send_input 实现 agent 间的数据传递 |
| 可维护性 | 流水线结构清晰,易于调试 |