Transform load-skill-memory from manual specification to automatic discovery: **Core Change**: - From: User specifies SKILL name manually - To: System automatically discovers and matches SKILL based on task context **New Capabilities**: 1. **Three-Step Execution**: - Step 1: Discover all available SKILLs (.claude/skills/) - Step 2: Match most relevant SKILL using scoring algorithm - Step 3: Activate matched SKILL via Skill() tool 2. **Intelligent Matching Algorithm**: - **Path-Based** (Highest Priority): Direct path match from file paths - **Keyword Matching** (Secondary): Score by keyword overlap - **Action Matching** (Tertiary): Detect action verbs (分析/修改/学习) 3. **Updated Parameters**: - From: `<skill_name> [--level] [task description]` - To: `"task description or file path"` - More intuitive user experience 4. **New Examples**: ```bash /memory:load-skill-memory "分析热模型builder pattern实现" /memory:load-skill-memory "D:\dongdiankaifa9\hydro_generator_module\builders\base.py" /memory:load-skill-memory "修改workflow文档生成逻辑" ``` **Matching Examples**: Task: "分析热模型builder pattern实现" - hydro_generator_module: 4 points (thermal+builder+analyzing) ✅ - Claude_dms3: 1 point (analyzing only) Task: "D:\dongdiankaifa9\hydro_generator_module\builders\base.py" - Path match: hydro_generator_module ✅ (exact path) **Benefits**: - No manual SKILL name required - Automatic best match selection - Path-based intelligent routing - Keyword scoring for relevance - Action verb detection for context **User Experience**: Before: "/memory:load-skill-memory hydro_generator_module '分析热模型'" After: "/memory:load-skill-memory '分析热模型实现'" System automatically discovers and activates hydro_generator_module SKILL. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
11 KiB
name, description, argument-hint, allowed-tools, examples
| name | description | argument-hint | allowed-tools | examples | |||
|---|---|---|---|---|---|---|---|
| load-skill-memory | Automatically discover and activate SKILL packages based on task context with intelligent matching | "task description or file path" | Bash(*), Read(*), Glob(*), Skill(*) |
|
Memory Load SKILL Command (/memory:load-skill-memory)
1. Overview
The memory:load-skill-memory command automatically discovers and activates the most relevant SKILL package based on task description or file path. It dynamically matches user intent against available SKILL descriptions and activates the best match.
Core Philosophy:
- Dynamic SKILL Discovery: Automatically finds relevant SKILL without manual specification
- Intelligent Matching: Matches task keywords against SKILL descriptions
- Path-Based Detection: Recognizes project paths and activates corresponding SKILL
- Automatic Activation: Uses Skill() tool to load comprehensive context
2. Parameters
"task description or file path"(Required): Task context or file path for SKILL matching- Task description: "分析热模型实现", "修改workflow逻辑", "学习参数系统"
- File path: "D:\dongdiankaifa9\hydro_generator_module\builders\base.py"
- Domain keywords: "thermal modeling", "workflow management", "multi-physics"
3. Three-Step Execution Flow
Step 1: Discover Available SKILLs
List All SKILL Packages:
bash(ls -1 .claude/skills/ 2>/dev/null || echo "No SKILLs available")
Read Each SKILL.md for Matching:
# For each SKILL directory found
for skill in $(ls -1 .claude/skills/); do
Read(.claude/skills/${skill}/SKILL.md)
done
Extract Matching Information:
- SKILL name
- Description (with trigger keywords)
- Location path (from description)
- Domain keywords
Step 2: Match Most Relevant SKILL
Matching Algorithm:
-
Path-Based Matching (Highest Priority):
- Extract path from user input if provided
- Compare against SKILL location paths in descriptions
- Exact match:
D:\dongdiankaifa9\hydro_generator_module→hydro_generator_moduleSKILL
-
Keyword Matching (Secondary Priority):
- Extract keywords from task description
- Match against SKILL description keywords
- Score each SKILL by keyword overlap count
-
Action Matching (Tertiary Priority):
- Detect action verbs: "分析", "修改", "学习", "实现"
- Match against SKILL description triggers
- Prefer SKILLs with matching action patterns
Scoring Example:
Task: "分析热模型builder pattern实现"
hydro_generator_module SKILL:
- Path match: No
- Keywords: "热模型"(1), "builder"(1), "实现"(1) = 3 points
- Action match: "analyzing"(1) = 1 point
- Total: 4 points ✅ Winner
Claude_dms3 SKILL:
- Path match: No
- Keywords: "workflow"(0) = 0 points
- Action match: "analyzing"(1) = 1 point
- Total: 1 point
No Match Handling:
⚠️ No matching SKILL found for: "{task_description}"
Available SKILLs:
- hydro_generator_module - Hydro-generator thermal modeling
- Claude_dms3 - Workflow orchestration system
Generate SKILL for your project: /memory:skill-memory [path]
Step 3: Activate Matched SKILL
Activate Best Match:
Skill(command: "{matched_skill_name}")
What Happens:
- System reads
.claude/skills/{matched_skill_name}/SKILL.md - Automatically loads appropriate documentation based on:
- SKILL description triggers (analyzing, modifying, learning)
- Current conversation context
- Memory gaps detection
- Progressive loading levels (0-3) handled automatically
- Context loaded directly into conversation memory
Confirmation Output:
✅ Matched and activated SKILL: {matched_skill_name}
🎯 Match reason: {path/keyword/action match}
📦 Location: {project_path}
💡 Context loaded for: {domain_description}
4. Output Format
Success Output:
✅ Activated SKILL: {skill_name}
📦 SKILL Package Information:
- Location: {project_path}
- Description: {description from SKILL.md}
- Documentation: .workflow/docs/{skill_name}/
💡 Context loaded automatically by SKILL system based on:
- Current task requirements
- Conversation memory gaps
- SKILL description triggers
🎯 Ready for: analyzing, modifying, or learning about {domain_description}
5. Usage Examples
Example 1: Task-Based Discovery (Keyword Matching)
User Command:
/memory:load-skill-memory "分析热模型builder pattern实现"
Execution Flow:
// Step 1: Discover available SKILLs
bash(ls -1 .claude/skills/)
// Output: hydro_generator_module, Claude_dms3
// Read each SKILL.md
Read(.claude/skills/hydro_generator_module/SKILL.md)
Read(.claude/skills/Claude_dms3/SKILL.md)
// Step 2: Match keywords
Keywords extracted: ["热模型", "builder", "pattern", "实现", "分析"]
Matching scores:
- hydro_generator_module: 4 points (thermal modeling, builder, analyzing)
- Claude_dms3: 1 point (analyzing only)
Best match: hydro_generator_module
// Step 3: Activate matched SKILL
Skill(command: "hydro_generator_module")
Output:
✅ Matched and activated SKILL: hydro_generator_module
🎯 Match reason: Keywords ["thermal", "builder"] + Action ["analyzing"]
📦 Location: D:\dongdiankaifa9\hydro_generator_module
💡 Context loaded for: hydro-generator thermal modeling
Example 2: Path-Based Discovery (Direct Path Match)
User Command:
/memory:load-skill-memory "D:\dongdiankaifa9\hydro_generator_module\builders\base.py"
Execution Flow:
// Step 1: Discover SKILLs
bash(ls -1 .claude/skills/)
// Step 2: Match path
Path extracted: "D:\dongdiankaifa9\hydro_generator_module"
Matching:
- hydro_generator_module location: "D:\dongdiankaifa9\hydro_generator_module" ✅ Exact match
- Claude_dms3 location: "D:\Claude_dms3" ❌ No match
Best match: hydro_generator_module (path match - highest priority)
// Step 3: Activate
Skill(command: "hydro_generator_module")
Output:
✅ Matched and activated SKILL: hydro_generator_module
🎯 Match reason: Path match (D:\dongdiankaifa9\hydro_generator_module)
📦 Location: D:\dongdiankaifa9\hydro_generator_module
💡 Context loaded for: hydro-generator thermal modeling
Example 3: Domain Keyword Discovery
User Command:
/memory:load-skill-memory "修改workflow文档生成调度逻辑"
Execution Flow:
// Step 1: Discover SKILLs
bash(ls -1 .claude/skills/)
// Step 2: Match keywords
Keywords: ["workflow", "文档生成", "调度", "修改"]
Matching scores:
- Claude_dms3: 3 points (workflow, docs generation, modifying)
- hydro_generator_module: 1 point (modifying only)
Best match: Claude_dms3
// Step 3: Activate
Skill(command: "Claude_dms3")
Output:
✅ Matched and activated SKILL: Claude_dms3
🎯 Match reason: Keywords ["workflow", "docs"] + Action ["modifying"]
📦 Location: D:\Claude_dms3
💡 Context loaded for: workflow orchestration and documentation
6. SKILL Trigger Mechanism
How SKILL System Determines Context Loading:
The SKILL.md description includes trigger patterns that automatically activate when:
-
Keyword Matching:
- User mentions domain keywords (e.g., "热模型", "workflow", "多物理场")
- Description keywords match task requirements
-
Action Detection:
- "analyzing" triggers for analysis tasks
- "modifying" triggers for code modification
- "learning" triggers for exploration
-
Memory Gap Detection:
- "especially when no relevant context exists in memory"
- System prioritizes SKILL loading when conversation lacks context
-
Path-Based Triggering:
- User mentions file paths matching SKILL location
- "files under this path" clause activates
Progressive Loading (Automatic):
- Level 0: ~2K tokens (Quick overview)
- Level 1: ~10K tokens (Core modules)
- Level 2: ~25K tokens (Complete system)
- Level 3: ~40K tokens (Full documentation)
System automatically selects appropriate level based on task complexity and context requirements.
7. Implementation Steps
Execution Logic:
// Step 1: Validate SKILL existence
skill_path = `.claude/skills/${skill_name}/SKILL.md`
if (!exists(skill_path)) {
list_available_skills()
return error_message
}
// Step 2: Activate SKILL
Skill(command: skill_name)
// Step 3: System handles automatically
// - Reads SKILL.md description
// - Matches triggers with task context
// - Loads appropriate documentation level
// - Injects context into conversation memory
// Step 4: Confirm activation
output_success_message(skill_name, project_path, description)
8. Error Handling
SKILL Not Found
❌ SKILL 'unknown_module' not found.
Available SKILLs:
- hydro_generator_module (D:\dongdiankaifa9\hydro_generator_module)
- Claude_dms3 (D:\Claude_dms3)
Activate SKILL: Skill(command: "skill_name")
Generate new SKILL: /memory:skill-memory [path]
Documentation Missing
⚠️ SKILL 'hydro_generator_module' exists but documentation incomplete.
Missing files:
- .workflow/docs/hydro_generator_module/ARCHITECTURE.md
Regenerate documentation: /memory:skill-memory --regenerate
9. Integration with Other Commands
Workflow Integration:
// 1. Activate SKILL context
Skill(command: "hydro_generator_module")
// 2. Use loaded context for planning
SlashCommand(command: "/workflow:plan \"增强thermal template支持动态阻抗\"")
// 3. Execute implementation
SlashCommand(command: "/workflow:execute")
Memory Refresh Pattern:
// Refresh SKILL context after code changes
Skill(command: "hydro_generator_module")
// System automatically detects changes and loads updated documentation
10. Token Optimization Strategy
Automatic Progressive Loading: The SKILL system automatically handles token optimization:
- Initial Load: Starts with minimum required context
- On-Demand Escalation: Loads more documentation if needed
- Task-Driven: Adjusts depth based on task complexity
- Memory-Aware: Avoids loading redundant context
Token Budget (Automatic):
- Simple queries: ~2-10K tokens
- Code analysis: ~10-25K tokens
- Implementation: ~25-40K tokens
Optimization Benefits:
- No manual level selection required
- System learns from conversation context
- Efficient memory usage
- Automatic reload when context insufficient
11. Notes
- Validation First: Always checks SKILL existence before activation
- Automatic Loading: Skill tool handles all documentation reading
- Session-Scoped: Activated SKILL context valid for current session
- Trigger-Based: Description patterns drive automatic activation
- Path-Aware: Triggers on project path mentions
- Memory-Smart: Prioritizes loading when conversation lacks context
- Read-Only: Does not modify SKILL files or documentation
- Reactivation: Can re-activate SKILL to refresh context after changes