mirror of
https://github.com/catlog22/Claude-Code-Workflow.git
synced 2026-02-11 02:33:51 +08:00
- Add `association_tree` module with components for building and processing call association trees using LSP call hierarchy capabilities. - Introduce `AssociationTreeBuilder` for constructing call trees from seed locations with depth-first expansion. - Create data structures: `TreeNode`, `CallTree`, and `UniqueNode` for representing nodes and relationships in the call tree. - Implement `ResultDeduplicator` to extract unique nodes from call trees and assign relevance scores based on depth, frequency, and kind. - Add unit tests for `AssociationTreeBuilder` and `ResultDeduplicator` to ensure functionality and correctness.
302 lines
9.3 KiB
Python
302 lines
9.3 KiB
Python
"""Result deduplication for association tree nodes.
|
|
|
|
Provides functionality to extract unique nodes from a call tree and assign
|
|
relevance scores based on various factors.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import logging
|
|
from typing import Dict, List, Optional
|
|
|
|
from .data_structures import (
|
|
CallTree,
|
|
TreeNode,
|
|
UniqueNode,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
# Symbol kind weights for scoring (higher = more relevant)
|
|
KIND_WEIGHTS: Dict[str, float] = {
|
|
# Functions and methods are primary targets
|
|
"function": 1.0,
|
|
"method": 1.0,
|
|
"12": 1.0, # LSP SymbolKind.Function
|
|
"6": 1.0, # LSP SymbolKind.Method
|
|
# Classes are important but secondary
|
|
"class": 0.8,
|
|
"5": 0.8, # LSP SymbolKind.Class
|
|
# Interfaces and types
|
|
"interface": 0.7,
|
|
"11": 0.7, # LSP SymbolKind.Interface
|
|
"type": 0.6,
|
|
# Constructors
|
|
"constructor": 0.9,
|
|
"9": 0.9, # LSP SymbolKind.Constructor
|
|
# Variables and constants
|
|
"variable": 0.4,
|
|
"13": 0.4, # LSP SymbolKind.Variable
|
|
"constant": 0.5,
|
|
"14": 0.5, # LSP SymbolKind.Constant
|
|
# Default for unknown kinds
|
|
"unknown": 0.3,
|
|
}
|
|
|
|
|
|
class ResultDeduplicator:
|
|
"""Extracts and scores unique nodes from call trees.
|
|
|
|
Processes a CallTree to extract unique code locations, merging duplicates
|
|
and assigning relevance scores based on:
|
|
- Depth: Shallower nodes (closer to seeds) score higher
|
|
- Frequency: Nodes appearing multiple times score higher
|
|
- Kind: Function/method > class > variable
|
|
|
|
Attributes:
|
|
depth_weight: Weight for depth factor in scoring (default 0.4)
|
|
frequency_weight: Weight for frequency factor (default 0.3)
|
|
kind_weight: Weight for symbol kind factor (default 0.3)
|
|
max_depth_penalty: Maximum depth before full penalty applied
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
depth_weight: float = 0.4,
|
|
frequency_weight: float = 0.3,
|
|
kind_weight: float = 0.3,
|
|
max_depth_penalty: int = 10,
|
|
):
|
|
"""Initialize ResultDeduplicator.
|
|
|
|
Args:
|
|
depth_weight: Weight for depth factor (0.0-1.0)
|
|
frequency_weight: Weight for frequency factor (0.0-1.0)
|
|
kind_weight: Weight for symbol kind factor (0.0-1.0)
|
|
max_depth_penalty: Depth at which score becomes 0 for depth factor
|
|
"""
|
|
self.depth_weight = depth_weight
|
|
self.frequency_weight = frequency_weight
|
|
self.kind_weight = kind_weight
|
|
self.max_depth_penalty = max_depth_penalty
|
|
|
|
def deduplicate(
|
|
self,
|
|
tree: CallTree,
|
|
max_results: Optional[int] = None,
|
|
) -> List[UniqueNode]:
|
|
"""Extract unique nodes from the call tree.
|
|
|
|
Traverses the tree, groups nodes by their unique key (file_path,
|
|
start_line, end_line), and merges duplicate occurrences.
|
|
|
|
Args:
|
|
tree: CallTree to process
|
|
max_results: Maximum number of results to return (None = all)
|
|
|
|
Returns:
|
|
List of UniqueNode objects, sorted by score descending
|
|
"""
|
|
if not tree.node_list:
|
|
return []
|
|
|
|
# Group nodes by unique key
|
|
unique_map: Dict[tuple, UniqueNode] = {}
|
|
|
|
for node in tree.node_list:
|
|
if node.is_cycle:
|
|
# Skip cycle markers - they point to already-counted nodes
|
|
continue
|
|
|
|
key = self._get_node_key(node)
|
|
|
|
if key in unique_map:
|
|
# Update existing unique node
|
|
unique_node = unique_map[key]
|
|
unique_node.occurrences += 1
|
|
unique_node.min_depth = min(unique_node.min_depth, node.depth)
|
|
unique_node.add_path(node.path_from_root)
|
|
|
|
# Collect context from relationships
|
|
for parent in node.parents:
|
|
if not parent.is_cycle:
|
|
unique_node.context_nodes.append(parent.node_id)
|
|
for child in node.children:
|
|
if not child.is_cycle:
|
|
unique_node.context_nodes.append(child.node_id)
|
|
else:
|
|
# Create new unique node
|
|
unique_node = UniqueNode(
|
|
file_path=node.item.file_path,
|
|
name=node.item.name,
|
|
kind=node.item.kind,
|
|
range=node.item.range,
|
|
min_depth=node.depth,
|
|
occurrences=1,
|
|
paths=[node.path_from_root.copy()],
|
|
context_nodes=[],
|
|
score=0.0,
|
|
)
|
|
|
|
# Collect initial context
|
|
for parent in node.parents:
|
|
if not parent.is_cycle:
|
|
unique_node.context_nodes.append(parent.node_id)
|
|
for child in node.children:
|
|
if not child.is_cycle:
|
|
unique_node.context_nodes.append(child.node_id)
|
|
|
|
unique_map[key] = unique_node
|
|
|
|
# Calculate scores for all unique nodes
|
|
unique_nodes = list(unique_map.values())
|
|
|
|
# Find max frequency for normalization
|
|
max_frequency = max((n.occurrences for n in unique_nodes), default=1)
|
|
|
|
for node in unique_nodes:
|
|
node.score = self._score_node(node, max_frequency)
|
|
|
|
# Sort by score descending
|
|
unique_nodes.sort(key=lambda n: n.score, reverse=True)
|
|
|
|
# Apply max_results limit
|
|
if max_results is not None and max_results > 0:
|
|
unique_nodes = unique_nodes[:max_results]
|
|
|
|
logger.debug(
|
|
"Deduplicated %d tree nodes to %d unique nodes",
|
|
len(tree.node_list),
|
|
len(unique_nodes),
|
|
)
|
|
|
|
return unique_nodes
|
|
|
|
def _score_node(
|
|
self,
|
|
node: UniqueNode,
|
|
max_frequency: int,
|
|
) -> float:
|
|
"""Calculate composite score for a unique node.
|
|
|
|
Score = depth_weight * depth_score +
|
|
frequency_weight * frequency_score +
|
|
kind_weight * kind_score
|
|
|
|
Args:
|
|
node: UniqueNode to score
|
|
max_frequency: Maximum occurrence count for normalization
|
|
|
|
Returns:
|
|
Composite score between 0.0 and 1.0
|
|
"""
|
|
# Depth score: closer to root = higher score
|
|
# Score of 1.0 at depth 0, decreasing to 0.0 at max_depth_penalty
|
|
depth_score = max(
|
|
0.0,
|
|
1.0 - (node.min_depth / self.max_depth_penalty),
|
|
)
|
|
|
|
# Frequency score: more occurrences = higher score
|
|
frequency_score = node.occurrences / max_frequency if max_frequency > 0 else 0.0
|
|
|
|
# Kind score: function/method > class > variable
|
|
kind_str = str(node.kind).lower()
|
|
kind_score = KIND_WEIGHTS.get(kind_str, KIND_WEIGHTS["unknown"])
|
|
|
|
# Composite score
|
|
score = (
|
|
self.depth_weight * depth_score
|
|
+ self.frequency_weight * frequency_score
|
|
+ self.kind_weight * kind_score
|
|
)
|
|
|
|
return score
|
|
|
|
def _get_node_key(self, node: TreeNode) -> tuple:
|
|
"""Get unique key for a tree node.
|
|
|
|
Uses (file_path, start_line, end_line) as the unique identifier.
|
|
|
|
Args:
|
|
node: TreeNode
|
|
|
|
Returns:
|
|
Tuple key for deduplication
|
|
"""
|
|
return (
|
|
node.item.file_path,
|
|
node.item.range.start_line,
|
|
node.item.range.end_line,
|
|
)
|
|
|
|
def filter_by_kind(
|
|
self,
|
|
nodes: List[UniqueNode],
|
|
kinds: List[str],
|
|
) -> List[UniqueNode]:
|
|
"""Filter unique nodes by symbol kind.
|
|
|
|
Args:
|
|
nodes: List of UniqueNode to filter
|
|
kinds: List of allowed kinds (e.g., ["function", "method"])
|
|
|
|
Returns:
|
|
Filtered list of UniqueNode
|
|
"""
|
|
kinds_lower = [k.lower() for k in kinds]
|
|
return [
|
|
node
|
|
for node in nodes
|
|
if str(node.kind).lower() in kinds_lower
|
|
]
|
|
|
|
def filter_by_file(
|
|
self,
|
|
nodes: List[UniqueNode],
|
|
file_patterns: List[str],
|
|
) -> List[UniqueNode]:
|
|
"""Filter unique nodes by file path patterns.
|
|
|
|
Args:
|
|
nodes: List of UniqueNode to filter
|
|
file_patterns: List of path substrings to match
|
|
|
|
Returns:
|
|
Filtered list of UniqueNode
|
|
"""
|
|
return [
|
|
node
|
|
for node in nodes
|
|
if any(pattern in node.file_path for pattern in file_patterns)
|
|
]
|
|
|
|
def to_dict_list(self, nodes: List[UniqueNode]) -> List[Dict]:
|
|
"""Convert list of UniqueNode to JSON-serializable dicts.
|
|
|
|
Args:
|
|
nodes: List of UniqueNode
|
|
|
|
Returns:
|
|
List of dictionaries
|
|
"""
|
|
return [
|
|
{
|
|
"file_path": node.file_path,
|
|
"name": node.name,
|
|
"kind": node.kind,
|
|
"range": {
|
|
"start_line": node.range.start_line,
|
|
"start_character": node.range.start_character,
|
|
"end_line": node.range.end_line,
|
|
"end_character": node.range.end_character,
|
|
},
|
|
"min_depth": node.min_depth,
|
|
"occurrences": node.occurrences,
|
|
"path_count": len(node.paths),
|
|
"score": round(node.score, 4),
|
|
}
|
|
for node in nodes
|
|
]
|