- Added validation for --style-variants in generate command to ensure it matches actual style directories, preventing errors during prototype generation. - Updated ui-instantiate-prototypes.sh script to validate style variants against existing directories, providing warnings and auto-correcting when necessary. - Improved clarity in generate.md documentation regarding parameters, default values, and auto-detection mechanisms. - Created a comprehensive UI Design Workflow Parameter Clarity Report to address inconsistencies in parameter naming and documentation across extract, consolidate, and generate commands. - Unified parameter naming conventions to reduce confusion and improve user experience. - Enhanced user guidance with a new README.md for the UI Design Workflow, outlining best practices and common mistakes.
28 KiB
name, description, usage, argument-hint, parameters, examples, allowed-tools
| name | description | usage | argument-hint | parameters | examples | allowed-tools | ||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| extract | Extract design style from reference images or text prompts using Claude's analysis | /workflow:ui-design:extract [--base-path <path>] [--session <id>] [--images "<glob>"] [--prompt "<desc>"] [--variants <count>] | [--base-path ".workflow/WFS-xxx/design-run-xxx"] [--session WFS-xxx] [--images "refs/*.png"] [--prompt "Modern minimalist"] [--variants 3] |
|
|
TodoWrite(*), Read(*), Write(*), Glob(*) |
Style Extraction Command
Overview
Extract design style elements from reference images or text prompts using Claude's built-in analysis capabilities. Generates a single, comprehensive style-cards.json file containing multiple design variants with complete token proposals.
Core Philosophy
- Claude-Native: 100% Claude-driven analysis, no external tools
- Single Output: Only
style-cards.jsonwith embedded token proposals - Sequential Execution: Generate multiple style variants in one pass
- Flexible Input: Images, text prompts, or both (hybrid mode)
- Reproducible: Deterministic output structure
Execution Protocol
Phase 0: Parameter Detection & Validation
# Detect input source
IF --images AND --prompt:
input_mode = "hybrid" # Text guides image analysis
ELSE IF --images:
input_mode = "image"
ELSE IF --prompt:
input_mode = "text"
ELSE:
ERROR: "Must provide --images or --prompt"
# Determine base path (PRIORITY: --base-path > --session > standalone)
IF --base-path provided:
base_path = {provided_base_path}
session_mode = "integrated" # Assume integrated if path is passed
# Extract session_id if possible from path pattern
IF base_path matches ".workflow/WFS-*/design-*":
session_id = extract_from_path(base_path, pattern="WFS-([^/]+)")
ELSE:
session_id = "standalone"
ELSE:
# Generate a new run_id and base_path only if not provided
run_id = "run-" + timestamp()
IF --session:
session_mode = "integrated"
session_id = {provided_session}
base_path = ".workflow/WFS-{session_id}/design-{run_id}/"
ELSE:
session_mode = "standalone"
base_path = ".workflow/.design/{run_id}/"
# Set variant count
variants_count = --variants provided ? {count} : 1
VALIDATE: 1 <= variants_count <= 5
Phase 1: Input Loading & Validation
# Expand and validate inputs
IF input_mode IN ["image", "hybrid"]:
expanded_images = Glob({--images pattern})
VERIFY: expanded_images.length > 0
FOR each image IN expanded_images:
image_data[i] = Read({image_path}) # Load for analysis
IF input_mode IN ["text", "hybrid"]:
VALIDATE: --prompt is non-empty string
prompt_guidance = {--prompt value}
# Create output directory
CREATE: {base_path}/style-extraction/
Phase 0.5: AI-Driven Design Space Divergence
# Step 1: Load project context to inform design space analysis
project_context = ""
IF exists({base_path}/.brainstorming/synthesis-specification.md):
project_context = Read({base_path}/.brainstorming/synthesis-specification.md)
ELSE IF exists({base_path}/.brainstorming/ui-designer/analysis.md):
project_context = Read({base_path}/.brainstorming/ui-designer/analysis.md)
REPORT: "🎨 Analyzing design space to generate maximally contrasting directions..."
# Step 2: AI-driven divergent direction generation
divergence_prompt = """
Analyze the user's design requirements and generate {variants_count} MAXIMALLY CONTRASTING design directions.
USER INPUT:
{IF prompt_guidance}
Prompt: "{prompt_guidance}"
{ENDIF}
{IF project_context}
Project Context Summary:
{extract_key_points(project_context, max_lines=10)}
{ENDIF}
{IF images}
Reference Images: {image_count} images will be analyzed in next phase
{ENDIF}
DESIGN ATTRIBUTE SPACE (use to maximize contrast):
- Color Saturation: [monochrome, muted, moderate, vibrant, hypersaturated]
- Visual Weight: [minimal, light, balanced, bold, heavy]
- Formality: [playful, casual, professional, formal, luxury]
- Organic vs Geometric: [organic/fluid, soft, balanced, geometric, brutalist]
- Innovation: [timeless, modern, contemporary, trendy, experimental]
- Density: [spacious, airy, balanced, compact, dense]
TASK:
1. Identify the design space center point from user requirements
2. Generate {variants_count} design directions that:
- Are MAXIMALLY DISTANT from each other in attribute space
- Each occupies a distinct region/quadrant of the design spectrum
- Together provide diverse aesthetic options for the user
- Are contextually appropriate for the project type
- Have clear, memorable philosophical differences
3. For each direction, generate:
- Specific search keywords for MCP research (3-5 keywords)
- Anti-keywords to avoid (2-3 keywords that would reduce contrast)
- Clear rationale explaining why this contrasts with other variants
OUTPUT FORMAT: Valid JSON only, no markdown:
{
"design_space_center": {
"color_saturation": "moderate",
"visual_weight": "balanced",
"formality": "professional",
"organic_geometric": "balanced",
"innovation": "contemporary",
"density": "balanced"
},
"divergent_directions": [
{
"id": "variant-1",
"philosophy_name": "Brief name 2-3 words (e.g., 'Minimal Brutalist')",
"design_attributes": {
"color_saturation": "monochrome",
"visual_weight": "minimal",
"formality": "professional",
"organic_geometric": "brutalist",
"innovation": "timeless",
"density": "spacious"
},
"search_keywords": ["minimal", "brutalist", "monochrome", "geometric", "Swiss design"],
"anti_keywords": ["decorative", "colorful", "organic"],
"rationale": "Extreme minimalism with geometric rigor, contrasts with any ornamental or colorful approaches"
}
// ... {variants_count} total directions
],
"contrast_verification": {
"min_pairwise_distance": "0.75",
"strategy": "Brief explanation of how maximum contrast was achieved"
}
}
RULES:
- Output ONLY valid JSON, no markdown code blocks or explanations
- Maximize inter-variant distance in attribute space
- Ensure each variant occupies a distinct aesthetic region
- Avoid overlapping attribute combinations
- All directions must be contextually appropriate for: {project_context or "general web UI"}
- Philosophy names should be memorable and evocative
- Search keywords should be specific and actionable for web research
"""
# Execute AI analysis
divergence_response = Claude_Native_Analysis(divergence_prompt)
divergent_directions = parse_json(divergence_response)
REPORT: "✅ Generated {variants_count} contrasting design directions:"
FOR direction IN divergent_directions.divergent_directions:
REPORT: " - {direction.philosophy_name}: {direction.rationale}"
# Store divergent directions for next phase
design_space_analysis = divergent_directions
Phase 1.5: Variant-Specific Design Trend Research (Exa MCP)
# Step 1: Execute independent MCP research for each variant
REPORT: "🔍 Researching design trends for each variant independently..."
design_trends = {}
FOR direction IN design_space_analysis.divergent_directions:
variant_id = direction.id
philosophy = direction.philosophy_name
keywords = direction.search_keywords
anti_keywords = direction.anti_keywords
REPORT: " → Researching {philosophy} ({variant_id})..."
# Build variant-specific search queries
variant_queries = [
# Colors: philosophy-specific palette trends
f"{philosophy} UI design color palettes {' '.join(keywords[:3])} 2024 2025",
# Typography: philosophy-specific font trends
f"{philosophy} typography trends {' '.join(keywords[:3])} web design 2024",
# Layout: philosophy-specific patterns
f"{philosophy} layout patterns {' '.join(keywords[:3])} design systems 2024",
# Contrast query: emphasize differentiation
f"design systems {philosophy} NOT {' NOT '.join(anti_keywords[:2])}"
]
# Execute MCP searches for this variant
design_trends[variant_id] = {
"philosophy": philosophy,
"attributes": direction.design_attributes,
"keywords": keywords,
"anti_keywords": anti_keywords,
"research": {}
}
FOR query IN variant_queries:
category = identify_category(query) # "colors", "typography", "layout", "contrast"
design_trends[variant_id].research[category] = mcp__exa__get_code_context_exa(
query=query,
tokensNum=2000 # Increased for more detailed guidance
)
REPORT: " ✅ {philosophy} research complete"
# Step 2: Gather shared accessibility guidelines (all variants)
REPORT: " → Researching universal accessibility guidelines..."
shared_accessibility = mcp__exa__get_code_context_exa(
query="WCAG 2.2 accessibility color contrast ARIA best practices 2024",
tokensNum=1500
)
REPORT: "✅ All variant-specific design research complete"
Phase 2: Variant-Specific Style Synthesis (Claude with Divergent Research)
This is a single-pass analysis that generates each variant based on its specific design direction and research.
Analysis Prompt Template:
Generate {variants_count} design style proposals, each guided by its pre-analyzed design direction and independent trend research.
INPUT MODE: {input_mode}
{IF input_mode IN ["image", "hybrid"]}
VISUAL REFERENCES: {list of loaded images}
Analyze these images through the lens of each variant's design philosophy
{ENDIF}
{IF input_mode IN ["text", "hybrid"]}
TEXT GUIDANCE: "{prompt_guidance}"
Apply this guidance while maintaining each variant's distinct aesthetic direction
{ENDIF}
DESIGN SPACE ANALYSIS:
{design_space_analysis summary}
VARIANT-SPECIFIC DESIGN DIRECTIONS AND RESEARCH:
{FOR each variant_id IN design_trends.keys()}
---
VARIANT: {variant_id}
PHILOSOPHY: {design_trends[variant_id].philosophy}
DESIGN ATTRIBUTES:
- Color Saturation: {design_trends[variant_id].attributes.color_saturation}
- Visual Weight: {design_trends[variant_id].attributes.visual_weight}
- Formality: {design_trends[variant_id].attributes.formality}
- Organic/Geometric: {design_trends[variant_id].attributes.organic_geometric}
- Innovation: {design_trends[variant_id].attributes.innovation}
- Density: {design_trends[variant_id].attributes.density}
SEARCH KEYWORDS: {', '.join(design_trends[variant_id].keywords)}
ANTI-PATTERNS (avoid): {', '.join(design_trends[variant_id].anti_keywords)}
TREND RESEARCH FOR THIS VARIANT:
Color Trends ({variant_id}):
{design_trends[variant_id].research.colors}
Typography Trends ({variant_id}):
{design_trends[variant_id].research.typography}
Layout Patterns ({variant_id}):
{design_trends[variant_id].research.layout}
Contrast Emphasis ({variant_id}):
{design_trends[variant_id].research.contrast}
---
{ENDFOR}
SHARED ACCESSIBILITY GUIDELINES (apply to all variants):
{shared_accessibility}
TASK: Generate {variants_count} design style variants where EACH variant:
1. Strictly follows its pre-defined design philosophy and attributes
2. Uses ONLY its variant-specific trend research for aesthetic decisions
3. Maintains maximum contrast with other variants' attributes
4. Incorporates its search keywords and avoids its anti-patterns
5. Uses OKLCH color space for all color values
6. Includes complete, production-ready design token proposals
7. Applies WCAG accessibility guidelines from shared research
CRITICAL RULES FOR CONTRAST:
- Variant-1 should feel completely different from Variant-2 and Variant-3
- Use each variant's specific attribute scores (e.g., "monochrome" vs "vibrant")
- Reference variant-specific research, NOT shared trends
- If Variant-1 is "minimal/geometric", Variant-2 must be "bold/organic" or similar contrast
- Each variant should be immediately distinguishable by visual inspection
OUTPUT FORMAT: JSON matching this structure (see full schema at end of prompt):
{
"extraction_metadata": { "session_id": "...", "input_mode": "...", "timestamp": "...", "variants_count": N },
"style_cards": [
{
"id": "variant-1",
"name": "Concise Style Name (2-3 words)",
"description": "2-3 sentence description",
"design_philosophy": "Core design principles",
"preview": { "primary": "oklch(...)", "background": "oklch(...)", "font_heading": "...", "border_radius": "..." },
"proposed_tokens": {
"colors": {
"brand": { "primary": "oklch(...)", "secondary": "oklch(...)", "accent": "oklch(...)" },
"surface": { "background": "oklch(...)", "elevated": "oklch(...)", "overlay": "oklch(...)" },
"semantic": { "success": "oklch(...)", "warning": "oklch(...)", "error": "oklch(...)", "info": "oklch(...)" },
"text": { "primary": "oklch(...)", "secondary": "oklch(...)", "tertiary": "oklch(...)", "inverse": "oklch(...)" },
"border": { "default": "oklch(...)", "strong": "oklch(...)", "subtle": "oklch(...)" }
},
"typography": { "font_family": {...}, "font_size": {...}, "font_weight": {...}, "line_height": {...}, "letter_spacing": {...} },
"spacing": { "0": "0", ..., "24": "6rem" },
"border_radius": { "none": "0", ..., "full": "9999px" },
"shadows": { "sm": "...", ..., "xl": "..." },
"breakpoints": { "sm": "640px", ..., "2xl": "1536px" }
}
}
// Repeat structure for ALL {variants_count} variants
]
}
RULES:
- Each variant must strictly adhere to its pre-defined design attributes
- Use ONLY variant-specific trend research (do NOT cross-pollinate research between variants)
- Maximize visual contrast between variants using their attribute differences
- All colors MUST use OKLCH format: oklch(L C H / A)
- Token structures must be complete and production-ready
- Use semantic naming throughout (e.g., "brand-primary" not "color-1")
- Ensure accessibility (WCAG AA contrast ratios: 4.5:1 text, 3:1 UI) using shared guidelines
- Apply typography trends from each variant's specific research
- Incorporate search keywords and actively avoid anti-patterns for each variant
- Each variant's philosophy_name should match the pre-analyzed name from design space analysis
- Reference specific trends from variant-specific research, not from other variants
Phase 3: Parse & Write Output
# Parse Claude's JSON response
style_cards_data = parse_json(claude_response)
# Write single output file
Write({
file_path: "{base_path}/style-extraction/style-cards.json",
content: style_cards_data
})
Phase 4: Completion
TodoWrite({
todos: [
{content: "Validate inputs and create directories", status: "completed", activeForm: "Validating inputs"},
{content: "Analyze design space for maximum contrast", status: "completed", activeForm: "Analyzing design space"},
{content: `Generate ${variants_count} divergent design directions`, status: "completed", activeForm: "Generating design directions"},
{content: "Research variant-specific design trends with Exa MCP", status: "completed", activeForm: "Researching variant trends"},
{content: "Synthesize style cards with independent research", status: "completed", activeForm: "Synthesizing style cards"},
{content: `Generate ${variants_count} contrasting style variants`, status: "completed", activeForm: "Generating style variants"}
]
});
Completion Message:
✅ Style extraction complete for session: {session_id}
Input mode: {input_mode}
{IF image mode: Images analyzed: {count}}
{IF prompt mode: Prompt: "{truncated_prompt}"}
🎨 Design Space Analysis:
- Generated {variants_count} MAXIMALLY CONTRASTING design directions
- Min pairwise contrast distance: {design_space_analysis.contrast_verification.min_pairwise_distance}
- Strategy: {design_space_analysis.contrast_verification.strategy}
Generated {variants_count} style variant(s):
{FOR each card: - {card.name} ({card.id}) - {card.design_philosophy}}
🔍 Research performed:
- {variants_count} × 4 variant-specific MCP queries ({variants_count * 4} total)
- 1 shared accessibility research query
- Each variant has independent trend guidance
📂 Output: {base_path}/style-extraction/style-cards.json
Next: /workflow:ui-design:consolidate --session {session_id} --variants {variants_count} [--layout-variants <count>]
Note: When called from /workflow:ui-design:auto, consolidation is triggered automatically.
Output Structure
.workflow/WFS-{session}/design-{run_id}/style-extraction/
└── style-cards.json # Single comprehensive output
OR (standalone mode):
.workflow/.design/{run_id}/style-extraction/
└── style-cards.json # Single comprehensive output
style-cards.json Format
Schema Structure:
{
"extraction_metadata": {
"session_id": "string",
"input_mode": "image|text|hybrid",
"timestamp": "ISO 8601 string",
"variants_count": "number"
},
"style_cards": [
{
"id": "variant-{n}",
"name": "Concise Style Name (2-3 words)",
"description": "2-3 sentence description of visual language and UX",
"design_philosophy": "Core design principles for this variant",
"preview": {
"primary": "oklch(...)",
"background": "oklch(...)",
"font_heading": "Font family, fallbacks",
"border_radius": "value"
},
"proposed_tokens": {
"colors": {
"brand": { "primary": "oklch(...)", "secondary": "oklch(...)", "accent": "oklch(...)" },
"surface": { "background": "oklch(...)", "elevated": "oklch(...)", "overlay": "oklch(...)" },
"semantic": { "success": "oklch(...)", "warning": "oklch(...)", "error": "oklch(...)", "info": "oklch(...)" },
"text": { "primary": "oklch(...)", "secondary": "oklch(...)", "tertiary": "oklch(...)", "inverse": "oklch(...)" },
"border": { "default": "oklch(...)", "strong": "oklch(...)", "subtle": "oklch(...)" }
},
"typography": {
"font_family": { "heading": "...", "body": "...", "mono": "..." },
"font_size": { "xs": "...", "sm": "...", "base": "...", "lg": "...", "xl": "...", "2xl": "...", "3xl": "...", "4xl": "..." },
"font_weight": { "normal": "400", "medium": "500", "semibold": "600", "bold": "700" },
"line_height": { "tight": "1.25", "normal": "1.5", "relaxed": "1.75" },
"letter_spacing": { "tight": "-0.025em", "normal": "0", "wide": "0.025em" }
},
"spacing": { "0": "0", "1": "0.25rem", "2": "0.5rem", ..., "24": "6rem" },
"border_radius": { "none": "0", "sm": "0.25rem", "md": "0.5rem", "lg": "0.75rem", "xl": "1rem", "full": "9999px" },
"shadows": { "sm": "...", "md": "...", "lg": "...", "xl": "..." },
"breakpoints": { "sm": "640px", "md": "768px", "lg": "1024px", "xl": "1280px", "2xl": "1536px" }
}
}
// Repeat structure for variants_count total (variant-1, variant-2, ..., variant-n)
]
}
Concrete Example (variant-1 only, others follow same structure):
{
"extraction_metadata": {
"session_id": "WFS-auth",
"input_mode": "hybrid",
"timestamp": "2025-01-15T10:30:00Z",
"variants_count": 3
},
"style_cards": [
{
"id": "variant-1",
"name": "Minimal Brutalist",
"description": "Stark geometric design with monochrome palette and sharp edges. Prioritizes function over decoration with extreme clarity.",
"design_philosophy": "Form follows function - eliminate all non-essential visual elements",
"preview": {
"primary": "oklch(0.20 0.01 270 / 1)",
"background": "oklch(0.98 0.00 0 / 1)",
"font_heading": "Inter, system-ui, sans-serif",
"border_radius": "0"
},
"proposed_tokens": {
"colors": {
"brand": {
"primary": "oklch(0.20 0.01 270 / 1)",
"secondary": "oklch(0.40 0.01 270 / 1)",
"accent": "oklch(0.60 0.01 270 / 1)"
},
"surface": {
"background": "oklch(0.98 0.00 0 / 1)",
"elevated": "oklch(0.95 0.00 0 / 1)",
"overlay": "oklch(0.90 0.00 0 / 1)"
},
"semantic": {
"success": "oklch(0.30 0.01 270 / 1)",
"warning": "oklch(0.30 0.01 270 / 1)",
"error": "oklch(0.30 0.01 270 / 1)",
"info": "oklch(0.30 0.01 270 / 1)"
},
"text": {
"primary": "oklch(0.10 0.00 0 / 1)",
"secondary": "oklch(0.40 0.00 0 / 1)",
"tertiary": "oklch(0.60 0.00 0 / 1)",
"inverse": "oklch(0.98 0.00 0 / 1)"
},
"border": {
"default": "oklch(0.20 0.00 0 / 1)",
"strong": "oklch(0.10 0.00 0 / 1)",
"subtle": "oklch(0.85 0.00 0 / 1)"
}
},
"typography": {
"font_family": {
"heading": "Inter, system-ui, sans-serif",
"body": "Inter, system-ui, sans-serif",
"mono": "JetBrains Mono, monospace"
},
"font_size": {
"xs": "0.75rem", "sm": "0.875rem", "base": "1rem", "lg": "1.125rem",
"xl": "1.25rem", "2xl": "1.5rem", "3xl": "1.875rem", "4xl": "2.25rem"
},
"font_weight": { "normal": "400", "medium": "500", "semibold": "600", "bold": "700" },
"line_height": { "tight": "1.25", "normal": "1.5", "relaxed": "1.75" },
"letter_spacing": { "tight": "-0.025em", "normal": "0", "wide": "0.025em" }
},
"spacing": {
"0": "0", "1": "0.25rem", "2": "0.5rem", "3": "0.75rem", "4": "1rem",
"5": "1.25rem", "6": "1.5rem", "8": "2rem", "10": "2.5rem", "12": "3rem",
"16": "4rem", "20": "5rem", "24": "6rem"
},
"border_radius": {
"none": "0", "sm": "0.25rem", "md": "0.5rem", "lg": "0.75rem", "xl": "1rem", "full": "9999px"
},
"shadows": {
"sm": "0 1px 2px oklch(0.00 0.00 0 / 0.05)",
"md": "0 4px 6px oklch(0.00 0.00 0 / 0.07)",
"lg": "0 10px 15px oklch(0.00 0.00 0 / 0.10)",
"xl": "0 20px 25px oklch(0.00 0.00 0 / 0.15)"
},
"breakpoints": {
"sm": "640px", "md": "768px", "lg": "1024px", "xl": "1280px", "2xl": "1536px"
}
}
},
{
"id": "variant-2",
"name": "Bold Vibrant",
"description": "High-energy design with saturated colors, dynamic typography, and strong contrast. (Full token structure same as variant-1)",
"design_philosophy": "Make a statement - use color and energy to create memorable experiences",
"preview": { "primary": "oklch(0.50 0.25 330 / 1)", "background": "oklch(0.15 0.02 270 / 1)", "..." },
"proposed_tokens": { "...same structure as variant-1 with different values..." }
},
{
"id": "variant-3",
"name": "Organic Natural",
"description": "Soft, rounded design with warm earth tones and fluid layouts. (Full token structure same as variant-1)",
"design_philosophy": "Nature-inspired - embrace curves, warmth, and organic flow",
"preview": { "primary": "oklch(0.55 0.15 60 / 1)", "background": "oklch(0.96 0.03 80 / 1)", "..." },
"proposed_tokens": { "...same structure as variant-1 with different values..." }
}
]
}
Key Structural Requirements:
- Each variant MUST have complete, independent token proposals (all categories present)
- All colors MUST use OKLCH format:
oklch(L C H / A) - Token keys MUST match exactly across all variants for consistency
- Variants differ in VALUES, not structure
- Production-ready: no placeholders or incomplete sections
Error Handling
- No images found: Report glob pattern and suggest corrections (e.g., "Pattern '*.png' matched 0 files in current directory")
- Invalid prompt: Require non-empty string for text mode
- Claude JSON parsing error: Retry with stricter format instructions and explicit structure requirements
- Invalid session: Create standalone session automatically in
.workflow/.scratchpad/ - Invalid variant count: Clamp to 1-5 range and warn user
Key Features
-
🚀 AI-Driven Design Space Exploration (Strategy A) 🆕
- Phase 0.5: AI analyzes requirements and generates MAXIMALLY CONTRASTING design directions
- Uses 6-dimensional design attribute space (color saturation, visual weight, formality, organic/geometric, innovation, density)
- Ensures each variant occupies a distinct region of the design spectrum
- Generates search keywords and anti-patterns for each variant
- Provides contrast verification with minimum pairwise distance metrics
-
🎯 Variant-Specific Trend Research 🆕
- Independent MCP queries for each variant (4 queries per variant)
- Each variant researches its specific design philosophy (e.g., "minimal brutalist" vs "bold vibrant")
- Uses philosophy-specific keywords and avoids cross-contamination
- Eliminates趋同性 (convergence) by preventing shared trend influence
- Shared accessibility research applied to all variants
-
🔒 Maximum Contrast Guarantee
- AI-driven divergence ensures variants are maximally distant in attribute space
- Each variant has distinct: philosophy, color saturation, visual weight, formality, etc.
- Explicit anti-patterns prevent variants from borrowing each other's characteristics
- Contrast verification built into design space analysis
-
Zero External Dependencies for Core Analysis
- No
gemini-wrapper, nocodexfor style synthesis - pure Claude - Single-pass comprehensive analysis with variant-specific trend integration
- Only uses Exa MCP for external trend research (not for synthesis)
- No
-
Streamlined Output
- Single file (
style-cards.json) vs. multiple scattered files - Eliminates
semantic_style_analysis.json,design-tokens.json,tailwind-tokens.jsclutter - Each variant contains complete token proposals embedded
- Single file (
-
Flexible Input Modes
- Image-only: Analyze visual references through each variant's philosophical lens
- Text-only: Generate from descriptions with maximum divergence
- Hybrid: Text guides image analysis while maintaining variant independence
- All modes enhanced with variant-specific web research
-
Context-Aware & Dynamic
- Extracts design keywords from user prompts (e.g., "minimalist", "Linear.app")
- Considers project type from brainstorming artifacts
- Dynamically generates design directions based on project context
- No hardcoded design philosophies - fully adaptive
-
Production-Ready Tokens
- Complete design system proposals per variant
- OKLCH color format for perceptual uniformity and accessibility
- Semantic naming conventions
- WCAG AA accessibility considerations from shared research
- Variant-specific typography trends (not generic)
-
Workflow Integration
- Integrated mode: Works within existing workflow sessions
- Standalone mode: Auto-creates session in scratchpad
- Context-aware: Can reference synthesis-specification.md or ui-designer/analysis.md
- Contrast metrics included in completion report
Integration Points
- Input: Reference images (PNG, JPG, WebP) via glob patterns, or text prompts
- Output:
style-cards.jsonfor/workflow:ui-design:consolidate - Context: Optional brainstorming artifacts (
synthesis-specification.md,ui-designer/analysis.md) - Auto Integration: Automatically triggered by
/workflow:ui-design:autoworkflow - Next Step:
/workflow:ui-design:consolidate --session {session_id} --variants {count} [--layout-variants <count>](add--keep-separatefor matrix mode)