Update all workflow command files to use Skill tool instead of SlashCommand: - Change allowed-tools: SlashCommand(*) → Skill(*) - Convert SlashCommand(command="/path", args="...") → Skill(skill="path", args="...") - Update descriptive text references from SlashCommand to Skill - Remove javascript language tags from code blocks (25 files) Affected 25 command files across: - workflow: plan, execute, init, lite-plan, lite-fix, etc. - workflow/test: test-fix-gen, test-cycle-execute, tdd-plan, tdd-verify - workflow/review: review-cycle-fix, review-module-cycle, review-session-cycle - workflow/ui-design: codify-style, explore-auto, imitate-auto - workflow/brainstorm: brainstorm-with-file, auto-parallel - issue: discover, discover-by-prompt, plan - ccw, ccw-debug This aligns with the actual Skill tool interface which uses 'skill' and 'args' parameters.
28 KiB
name, description, argument-hint, allowed-tools
| name | description | argument-hint | allowed-tools |
|---|---|---|---|
| issue:discover-by-prompt | Discover issues from user prompt with Gemini-planned iterative multi-agent exploration. Uses ACE semantic search for context gathering and supports cross-module comparison (e.g., frontend vs backend API contracts). | [-y|--yes] <prompt> [--scope=src/**] [--depth=standard|deep] [--max-iterations=5] | Skill(*), TodoWrite(*), Read(*), Bash(*), Task(*), AskUserQuestion(*), Glob(*), Grep(*), mcp__ace-tool__search_context(*), mcp__exa__search(*) |
Auto Mode
When --yes or -y: Auto-continue all iterations, skip confirmations.
Issue Discovery by Prompt
Quick Start
# Discover issues based on user description
/issue:discover-by-prompt "Check if frontend API calls match backend implementations"
# Compare specific modules
/issue:discover-by-prompt "Verify auth flow consistency between mobile and web clients" --scope=src/auth/**,src/mobile/**
# Deep exploration with more iterations
/issue:discover-by-prompt "Find all places where error handling is inconsistent" --depth=deep --max-iterations=8
# Focused backend-frontend contract check
/issue:discover-by-prompt "Compare REST API definitions with frontend fetch calls"
Core Difference from /issue:discover:
discover: Pre-defined perspectives (bug, security, etc.), parallel executiondiscover-by-prompt: User-driven prompt, Gemini-planned strategy, iterative exploration
What & Why
Core Concept
Prompt-driven issue discovery with intelligent planning. Instead of fixed perspectives, this command:
- Analyzes user intent via Gemini to understand what to find
- Plans exploration strategy dynamically based on codebase structure
- Executes iterative multi-agent exploration with feedback loops
- Performs cross-module comparison when detecting comparison intent
Value Proposition
- Natural Language Input: Describe what you want to find, not how to find it
- Intelligent Planning: Gemini designs optimal exploration strategy
- Iterative Refinement: Each round builds on previous discoveries
- Cross-Module Analysis: Compare frontend/backend, mobile/web, old/new implementations
- Adaptive Exploration: Adjusts direction based on findings
Use Cases
| Scenario | Example Prompt |
|---|---|
| API Contract | "Check if frontend calls match backend endpoints" |
| Error Handling | "Find inconsistent error handling patterns" |
| Migration Gap | "Compare old auth with new auth implementation" |
| Feature Parity | "Verify mobile has all web features" |
| Schema Drift | "Check if TypeScript types match API responses" |
| Integration | "Find mismatches between service A and service B" |
How It Works
Execution Flow
Phase 1: Prompt Analysis & Initialization
├─ Parse user prompt and flags
├─ Detect exploration intent (comparison/search/verification)
└─ Initialize discovery session
Phase 1.5: ACE Context Gathering
├─ Use ACE semantic search to understand codebase structure
├─ Identify relevant modules based on prompt keywords
├─ Collect architecture context for Gemini planning
└─ Build initial context package
Phase 2: Gemini Strategy Planning
├─ Feed ACE context + prompt to Gemini CLI
├─ Gemini analyzes and generates exploration strategy
├─ Create exploration dimensions with search targets
├─ Define comparison matrix (if comparison intent)
└─ Set success criteria and iteration limits
Phase 3: Iterative Agent Exploration (with ACE)
├─ Iteration 1: Initial exploration by assigned agents
│ ├─ Agent A: ACE search + explore dimension 1
│ ├─ Agent B: ACE search + explore dimension 2
│ └─ Collect findings, update shared context
├─ Iteration 2-N: Refined exploration
│ ├─ Analyze previous findings
│ ├─ ACE search for related code paths
│ ├─ Execute targeted exploration
│ └─ Update cumulative findings
└─ Termination: Max iterations or convergence
Phase 4: Cross-Analysis & Synthesis
├─ Compare findings across dimensions
├─ Identify discrepancies and issues
├─ Calculate confidence scores
└─ Generate issue candidates
Phase 5: Issue Generation & Summary
├─ Convert findings to issue format
├─ Write discovery outputs
└─ Prompt user for next action
Exploration Dimensions
Dimensions are dynamically generated by Gemini based on the user prompt. Not limited to predefined categories.
Examples:
| Prompt | Generated Dimensions |
|---|---|
| "Check API contracts" | frontend-calls, backend-handlers |
| "Find auth issues" | auth-module (single dimension) |
| "Compare old/new implementations" | legacy-code, new-code |
| "Audit payment flow" | payment-service, validation, logging |
| "Find error handling gaps" | error-handlers, error-types, recovery-logic |
Gemini analyzes the prompt + ACE context to determine:
- How many dimensions are needed (1 to N)
- What each dimension should focus on
- Whether comparison is needed between dimensions
Iteration Strategy
┌─────────────────────────────────────────────────────────────┐
│ Iteration Loop │
├─────────────────────────────────────────────────────────────┤
│ 1. Plan: What to explore this iteration │
│ └─ Based on: previous findings + unexplored areas │
│ │
│ 2. Execute: Launch agents for this iteration │
│ └─ Each agent: explore → collect → return summary │
│ │
│ 3. Analyze: Process iteration results │
│ └─ New findings? Gaps? Contradictions? │
│ │
│ 4. Decide: Continue or terminate │
│ └─ Terminate if: max iterations OR convergence OR │
│ high confidence on all questions │
└─────────────────────────────────────────────────────────────┘
Core Responsibilities
Phase 1: Prompt Analysis & Initialization
// Step 1: Parse arguments
const { prompt, scope, depth, maxIterations } = parseArgs(args);
// Step 2: Generate discovery ID
const discoveryId = `DBP-${formatDate(new Date(), 'YYYYMMDD-HHmmss')}`;
// Step 3: Create output directory
const outputDir = `.workflow/issues/discoveries/${discoveryId}`;
await mkdir(outputDir, { recursive: true });
await mkdir(`${outputDir}/iterations`, { recursive: true });
// Step 4: Detect intent type from prompt
const intentType = detectIntent(prompt);
// Returns: 'comparison' | 'search' | 'verification' | 'audit'
// Step 5: Initialize discovery state
await writeJson(`${outputDir}/discovery-state.json`, {
discovery_id: discoveryId,
type: 'prompt-driven',
prompt: prompt,
intent_type: intentType,
scope: scope || '**/*',
depth: depth || 'standard',
max_iterations: maxIterations || 5,
phase: 'initialization',
created_at: new Date().toISOString(),
iterations: [],
cumulative_findings: [],
comparison_matrix: null // filled for comparison intent
});
Phase 1.5: ACE Context Gathering
Purpose: Use ACE semantic search to gather codebase context before Gemini planning.
// Step 1: Extract keywords from prompt for semantic search
const keywords = extractKeywords(prompt);
// e.g., "frontend API calls match backend" → ["frontend", "API", "backend", "endpoints"]
// Step 2: Use ACE to understand codebase structure
const aceQueries = [
`Project architecture and module structure for ${keywords.join(', ')}`,
`Where are ${keywords[0]} implementations located?`,
`How does ${keywords.slice(0, 2).join(' ')} work in this codebase?`
];
const aceResults = [];
for (const query of aceQueries) {
const result = await mcp__ace-tool__search_context({
project_root_path: process.cwd(),
query: query
});
aceResults.push({ query, result });
}
// Step 3: Build context package for Gemini (kept in memory)
const aceContext = {
prompt_keywords: keywords,
codebase_structure: aceResults[0].result,
relevant_modules: aceResults.slice(1).map(r => r.result),
detected_patterns: extractPatterns(aceResults)
};
// Step 4: Update state (no separate file)
await updateDiscoveryState(outputDir, {
phase: 'context-gathered',
ace_context: {
queries_executed: aceQueries.length,
modules_identified: aceContext.relevant_modules.length
}
});
// aceContext passed to Phase 2 in memory
ACE Query Strategy by Intent Type:
| Intent | ACE Queries |
|---|---|
| comparison | "frontend API calls", "backend API handlers", "API contract definitions" |
| search | "{keyword} implementations", "{keyword} usage patterns" |
| verification | "expected behavior for {feature}", "test coverage for {feature}" |
| audit | "all {category} patterns", "{category} security concerns" |
Phase 2: Gemini Strategy Planning
Purpose: Gemini analyzes user prompt + ACE context to design optimal exploration strategy.
// Step 1: Load ACE context gathered in Phase 1.5
const aceContext = await readJson(`${outputDir}/ace-context.json`);
// Step 2: Build Gemini planning prompt with ACE context
const planningPrompt = `
PURPOSE: Analyze discovery prompt and create exploration strategy based on codebase context
TASK:
• Parse user intent from prompt: "${prompt}"
• Use codebase context to identify specific modules and files to explore
• Create exploration dimensions with precise search targets
• Define comparison matrix structure (if comparison intent)
• Set success criteria and iteration strategy
MODE: analysis
CONTEXT: @${scope || '**/*'} | Discovery type: ${intentType}
## Codebase Context (from ACE semantic search)
${JSON.stringify(aceContext, null, 2)}
EXPECTED: JSON exploration plan following exploration-plan-schema.json:
{
"intent_analysis": { "type": "${intentType}", "primary_question": "...", "sub_questions": [...] },
"dimensions": [{ "name": "...", "description": "...", "search_targets": [...], "focus_areas": [...], "agent_prompt": "..." }],
"comparison_matrix": { "dimension_a": "...", "dimension_b": "...", "comparison_points": [...] },
"success_criteria": [...],
"estimated_iterations": N,
"termination_conditions": [...]
}
CONSTRAINTS: Use ACE context to inform targets | Focus on actionable plan
`;
// Step 3: Execute Gemini planning
Bash({
command: `ccw cli -p "${planningPrompt}" --tool gemini --mode analysis`,
run_in_background: true,
timeout: 300000
});
// Step 4: Parse Gemini output and validate against schema
const explorationPlan = await parseGeminiPlanOutput(geminiResult);
validateAgainstSchema(explorationPlan, 'exploration-plan-schema.json');
// Step 5: Enhance plan with ACE-discovered file paths
explorationPlan.dimensions = explorationPlan.dimensions.map(dim => ({
...dim,
ace_suggested_files: aceContext.relevant_modules
.filter(m => m.relevance_to === dim.name)
.map(m => m.file_path)
}));
// Step 6: Update state (plan kept in memory, not persisted)
await updateDiscoveryState(outputDir, {
phase: 'planned',
exploration_plan: {
dimensions_count: explorationPlan.dimensions.length,
has_comparison_matrix: !!explorationPlan.comparison_matrix,
estimated_iterations: explorationPlan.estimated_iterations
}
});
// explorationPlan passed to Phase 3 in memory
Gemini Planning Responsibilities:
| Responsibility | Input | Output |
|---|---|---|
| Intent Analysis | User prompt | type, primary_question, sub_questions |
| Dimension Design | ACE context + prompt | dimensions with search_targets |
| Comparison Matrix | Intent type + modules | comparison_points (if applicable) |
| Iteration Strategy | Depth setting | estimated_iterations, termination_conditions |
Gemini Planning Output Schema:
{
"intent_analysis": {
"type": "comparison|search|verification|audit",
"primary_question": "string",
"sub_questions": ["string"]
},
"dimensions": [
{
"name": "frontend",
"description": "Client-side API calls and error handling",
"search_targets": ["src/api/**", "src/hooks/**"],
"focus_areas": ["fetch calls", "error boundaries", "response parsing"],
"agent_prompt": "Explore frontend API consumption patterns..."
},
{
"name": "backend",
"description": "Server-side API implementations",
"search_targets": ["src/server/**", "src/routes/**"],
"focus_areas": ["endpoint handlers", "response schemas", "error responses"],
"agent_prompt": "Explore backend API implementations..."
}
],
"comparison_matrix": {
"dimension_a": "frontend",
"dimension_b": "backend",
"comparison_points": [
{"aspect": "endpoints", "frontend_check": "fetch URLs", "backend_check": "route paths"},
{"aspect": "methods", "frontend_check": "HTTP methods used", "backend_check": "methods accepted"},
{"aspect": "payloads", "frontend_check": "request body structure", "backend_check": "expected schema"},
{"aspect": "responses", "frontend_check": "response parsing", "backend_check": "response format"},
{"aspect": "errors", "frontend_check": "error handling", "backend_check": "error responses"}
]
},
"success_criteria": [
"All API endpoints mapped between frontend and backend",
"Discrepancies identified with file:line references",
"Each finding includes remediation suggestion"
],
"estimated_iterations": 3,
"termination_conditions": [
"All comparison points verified",
"No new findings in last iteration",
"Confidence > 0.8 on primary question"
]
}
Phase 3: Iterative Agent Exploration (with ACE)
Purpose: Multi-agent iterative exploration using ACE for semantic search within each iteration.
let iteration = 0;
let cumulativeFindings = [];
let sharedContext = { aceDiscoveries: [], crossReferences: [] };
let shouldContinue = true;
while (shouldContinue && iteration < maxIterations) {
iteration++;
const iterationDir = `${outputDir}/iterations/${iteration}`;
await mkdir(iterationDir, { recursive: true });
// Step 1: ACE-assisted iteration planning
// Use previous findings to guide ACE queries for this iteration
const iterationAceQueries = iteration === 1
? explorationPlan.dimensions.map(d => d.focus_areas[0]) // Initial queries from plan
: deriveQueriesFromFindings(cumulativeFindings); // Follow-up queries from findings
// Execute ACE searches to find related code
const iterationAceResults = [];
for (const query of iterationAceQueries) {
const result = await mcp__ace-tool__search_context({
project_root_path: process.cwd(),
query: `${query} in ${explorationPlan.scope}`
});
iterationAceResults.push({ query, result });
}
// Update shared context with ACE discoveries
sharedContext.aceDiscoveries.push(...iterationAceResults);
// Step 2: Plan this iteration based on ACE results
const iterationPlan = planIteration(iteration, explorationPlan, cumulativeFindings, iterationAceResults);
// Step 3: Launch dimension agents with ACE context
const agentPromises = iterationPlan.dimensions.map(dimension =>
Task({
subagent_type: "cli-explore-agent",
run_in_background: false,
description: `Explore ${dimension.name} (iteration ${iteration})`,
prompt: buildDimensionPromptWithACE(dimension, iteration, cumulativeFindings, iterationAceResults, iterationDir)
})
);
// Wait for iteration agents
const iterationResults = await Promise.all(agentPromises);
// Step 4: Collect and analyze iteration findings
const iterationFindings = await collectIterationFindings(iterationDir, iterationPlan.dimensions);
// Step 5: Cross-reference findings between dimensions
if (iterationPlan.dimensions.length > 1) {
const crossRefs = findCrossReferences(iterationFindings, iterationPlan.dimensions);
sharedContext.crossReferences.push(...crossRefs);
}
cumulativeFindings.push(...iterationFindings);
// Step 6: Decide whether to continue
const convergenceCheck = checkConvergence(iterationFindings, cumulativeFindings, explorationPlan);
shouldContinue = !convergenceCheck.converged;
// Step 7: Update state (iteration summary embedded in state)
await updateDiscoveryState(outputDir, {
iterations: [...state.iterations, {
number: iteration,
findings_count: iterationFindings.length,
ace_queries: iterationAceQueries.length,
cross_references: sharedContext.crossReferences.length,
new_discoveries: convergenceCheck.newDiscoveries,
confidence: convergenceCheck.confidence,
continued: shouldContinue
}],
cumulative_findings: cumulativeFindings
});
}
ACE in Iteration Loop:
Iteration N
│
├─→ ACE Search (based on previous findings)
│ └─ Query: "related code paths for {finding.category}"
│ └─ Result: Additional files to explore
│
├─→ Agent Exploration (with ACE context)
│ └─ Agent receives: dimension targets + ACE suggestions
│ └─ Agent can call ACE for deeper search
│
├─→ Cross-Reference Analysis
│ └─ Compare findings between dimensions
│ └─ Identify discrepancies
│
└─→ Convergence Check
└─ New findings? Continue
└─ No new findings? Terminate
Dimension Agent Prompt Template (with ACE):
function buildDimensionPromptWithACE(dimension, iteration, previousFindings, aceResults, outputDir) {
// Filter ACE results relevant to this dimension
const relevantAceResults = aceResults.filter(r =>
r.query.includes(dimension.name) || dimension.focus_areas.some(fa => r.query.includes(fa))
);
return `
## Task Objective
Explore ${dimension.name} dimension for issue discovery (Iteration ${iteration})
## Context
- Dimension: ${dimension.name}
- Description: ${dimension.description}
- Search Targets: ${dimension.search_targets.join(', ')}
- Focus Areas: ${dimension.focus_areas.join(', ')}
## ACE Semantic Search Results (Pre-gathered)
The following files/code sections were identified by ACE as relevant to this dimension:
${JSON.stringify(relevantAceResults.map(r => ({ query: r.query, files: r.result.slice(0, 5) })), null, 2)}
**Use ACE for deeper exploration**: You have access to mcp__ace-tool__search_context.
When you find something interesting, use ACE to find related code:
- mcp__ace-tool__search_context({ project_root_path: ".", query: "related to {finding}" })
${iteration > 1 ? `
## Previous Findings to Build Upon
${summarizePreviousFindings(previousFindings, dimension.name)}
## This Iteration Focus
- Explore areas not yet covered (check ACE results for new files)
- Verify/deepen previous findings
- Follow leads from previous discoveries
- Use ACE to find cross-references between dimensions
` : ''}
## MANDATORY FIRST STEPS
1. Read exploration plan: ${outputDir}/../exploration-plan.json
2. Read schema: ~/.claude/workflows/cli-templates/schemas/discovery-finding-schema.json
3. Review ACE results above for starting points
4. Explore files identified by ACE
## Exploration Instructions
${dimension.agent_prompt}
## ACE Usage Guidelines
- Use ACE when you need to find:
- Where a function/class is used
- Related implementations in other modules
- Cross-module dependencies
- Similar patterns elsewhere in codebase
- Query format: Natural language, be specific
- Example: "Where is UserService.authenticate called from?"
## Output Requirements
**1. Write JSON file**: ${outputDir}/${dimension.name}.json
Follow discovery-finding-schema.json:
- findings: [{id, title, category, description, file, line, snippet, confidence, related_dimension}]
- coverage: {files_explored, areas_covered, areas_remaining}
- leads: [{description, suggested_search}] // for next iteration
- ace_queries_used: [{query, result_count}] // track ACE usage
**2. Return summary**:
- Total findings this iteration
- Key discoveries
- ACE queries that revealed important code
- Recommended next exploration areas
## Success Criteria
- [ ] JSON written to ${outputDir}/${dimension.name}.json
- [ ] Each finding has file:line reference
- [ ] ACE used for cross-references where applicable
- [ ] Coverage report included
- [ ] Leads for next iteration identified
`;
}
Phase 4: Cross-Analysis & Synthesis
// For comparison intent, perform cross-analysis
if (intentType === 'comparison' && explorationPlan.comparison_matrix) {
const comparisonResults = [];
for (const point of explorationPlan.comparison_matrix.comparison_points) {
const dimensionAFindings = cumulativeFindings.filter(f =>
f.related_dimension === explorationPlan.comparison_matrix.dimension_a &&
f.category.includes(point.aspect)
);
const dimensionBFindings = cumulativeFindings.filter(f =>
f.related_dimension === explorationPlan.comparison_matrix.dimension_b &&
f.category.includes(point.aspect)
);
// Compare and find discrepancies
const discrepancies = findDiscrepancies(dimensionAFindings, dimensionBFindings, point);
comparisonResults.push({
aspect: point.aspect,
dimension_a_count: dimensionAFindings.length,
dimension_b_count: dimensionBFindings.length,
discrepancies: discrepancies,
match_rate: calculateMatchRate(dimensionAFindings, dimensionBFindings)
});
}
// Write comparison analysis
await writeJson(`${outputDir}/comparison-analysis.json`, {
matrix: explorationPlan.comparison_matrix,
results: comparisonResults,
summary: {
total_discrepancies: comparisonResults.reduce((sum, r) => sum + r.discrepancies.length, 0),
overall_match_rate: average(comparisonResults.map(r => r.match_rate)),
critical_mismatches: comparisonResults.filter(r => r.match_rate < 0.5)
}
});
}
// Prioritize all findings
const prioritizedFindings = prioritizeFindings(cumulativeFindings, explorationPlan);
Phase 5: Issue Generation & Summary
// Convert high-confidence findings to issues
const issueWorthy = prioritizedFindings.filter(f =>
f.confidence >= 0.7 || f.priority === 'critical' || f.priority === 'high'
);
const issues = issueWorthy.map(finding => ({
id: `ISS-${discoveryId}-${finding.id}`,
title: finding.title,
description: finding.description,
source: {
discovery_id: discoveryId,
finding_id: finding.id,
dimension: finding.related_dimension
},
file: finding.file,
line: finding.line,
priority: finding.priority,
category: finding.category,
suggested_fix: finding.suggested_fix,
confidence: finding.confidence,
status: 'discovered',
created_at: new Date().toISOString()
}));
// Write issues
await writeJsonl(`${outputDir}/discovery-issues.jsonl`, issues);
// Update final state (summary embedded in state, no separate file)
await updateDiscoveryState(outputDir, {
phase: 'complete',
updated_at: new Date().toISOString(),
results: {
total_iterations: iteration,
total_findings: cumulativeFindings.length,
issues_generated: issues.length,
comparison_match_rate: comparisonResults
? average(comparisonResults.map(r => r.match_rate))
: null
}
});
// Prompt user for next action
await AskUserQuestion({
questions: [{
question: `Discovery complete: ${issues.length} issues from ${cumulativeFindings.length} findings across ${iteration} iterations. What next?`,
header: "Next Step",
multiSelect: false,
options: [
{ label: "Export to Issues (Recommended)", description: `Export ${issues.length} issues for planning` },
{ label: "Review Details", description: "View comparison analysis and iteration details" },
{ label: "Run Deeper", description: "Continue with more iterations" },
{ label: "Skip", description: "Complete without exporting" }
]
}]
});
Output File Structure
.workflow/issues/discoveries/
└── {DBP-YYYYMMDD-HHmmss}/
├── discovery-state.json # Session state with iteration tracking
├── iterations/
│ ├── 1/
│ │ └── {dimension}.json # Dimension findings
│ ├── 2/
│ │ └── {dimension}.json
│ └── ...
├── comparison-analysis.json # Cross-dimension comparison (if applicable)
└── discovery-issues.jsonl # Generated issue candidates
Simplified Design:
- ACE context and Gemini plan kept in memory, not persisted
- Iteration summaries embedded in state
- No separate summary.md (state.json contains all needed info)
Schema References
| Schema | Path | Used By |
|---|---|---|
| Discovery State | discovery-state-schema.json |
Orchestrator (state tracking) |
| Discovery Finding | discovery-finding-schema.json |
Dimension agents (output) |
| Exploration Plan | exploration-plan-schema.json |
Gemini output validation (memory only) |
Configuration Options
| Flag | Default | Description |
|---|---|---|
--scope |
**/* |
File pattern to explore |
--depth |
standard |
standard (3 iterations) or deep (5+ iterations) |
--max-iterations |
5 | Maximum exploration iterations |
--tool |
gemini |
Planning tool (gemini/qwen) |
--plan-only |
false |
Stop after Phase 2 (Gemini planning), show plan for user review |
Examples
Example 1: Single Module Deep Dive
/issue:discover-by-prompt "Find all potential issues in the auth module" --scope=src/auth/**
Gemini plans (single dimension):
- Dimension: auth-module
- Focus: security vulnerabilities, edge cases, error handling, test gaps
Iterations: 2-3 (until no new findings)
Example 2: API Contract Comparison
/issue:discover-by-prompt "Check if API calls match implementations" --scope=src/**
Gemini plans (comparison):
- Dimension 1: api-consumers (fetch calls, hooks, services)
- Dimension 2: api-providers (handlers, routes, controllers)
- Comparison matrix: endpoints, methods, payloads, responses
Example 3: Multi-Module Audit
/issue:discover-by-prompt "Audit the payment flow for issues" --scope=src/payment/**
Gemini plans (multi-dimension):
- Dimension 1: payment-logic (calculations, state transitions)
- Dimension 2: validation (input checks, business rules)
- Dimension 3: error-handling (failure modes, recovery)
Example 4: Plan Only Mode
/issue:discover-by-prompt "Find inconsistent patterns" --plan-only
Stops after Gemini planning, outputs:
Gemini Plan:
- Intent: search
- Dimensions: 2 (pattern-definitions, pattern-usages)
- Estimated iterations: 3
Continue with exploration? [Y/n]
Related Commands
# After discovery, plan solutions
/issue:plan DBP-001-01,DBP-001-02
# View all discoveries
/issue:manage
# Standard perspective-based discovery
/issue:discover src/auth/** --perspectives=security,bug
Best Practices
- Be Specific in Prompts: More specific prompts lead to better Gemini planning
- Scope Appropriately: Narrow scope for focused comparison, wider for audits
- Review Exploration Plan: Check
exploration-plan.jsonbefore long explorations - Use Standard Depth First: Start with standard, go deep only if needed
- Combine with
/issue:discover: Use prompt-based for comparisons, perspective-based for audits